Bayesian Models of Social Behavior using Online Resources
使用在线资源的社会行为贝叶斯模型
基本信息
- 批准号:1048563
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-01-01 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
People spend a great deal of their lives socializing, or interacting with other people. On a typical day a person might collaborate on a project with their work colleagues, play softball with their teammates, and converse with their family. Social interactions are inherently part of most of our activities, therefore, understanding social interactions is a fundamental part of understanding human behavior. As the amount of time people spend online rapidly grows, social interactions which were once limited to in-person meetings, letters, and telephone calls, are increasingly occurring through the use of online resources such as email, Facebook, and online chats. Social and cognitive scientists who strive to understand human behavior can analyze online interactions to illuminate social behavior in this new setting, and benefit from the wealth of data that it provides. However, social interactions are extremely complex, so analyzing and modeling them is not easy in any setting.Fortunately Bayesian probabilistic methods offer rich, flexible, generative models for data, which can be used to model complex, highly structured, social interactions. In general, Bayesian methods provide a principled framework for reasoning about an uncertain world. Bayesian latent variable models allow us to reason about, or discover, the potentially quite complex, unobserved structure that underlies what we do observe. This research develops methods which discover the unobserved structure necessary to model complex social interactions which occur online, explore group interactions, evaluate how context effects social interactions, and explore social influence. This work has the potential to improve science (e.g. by improving long-distance collaborations), commerce (e.g. by identifying whom businesses should inform about their products), and society at large (e.g. by improving social networking).
人们一生中大部分时间都花在社交或与他人互动上。在典型的一天中,一个人可能会与同事合作完成一个项目,与队友一起打垒球,并与家人交谈。社交互动本质上是我们大多数活动的一部分,因此,理解社交互动是理解人类行为的基本部分。随着人们上网时间的快速增长,曾经仅限于面对面会议、信件和电话的社交互动越来越多地通过使用电子邮件、Facebook 和在线聊天等在线资源进行。努力了解人类行为的社会和认知科学家可以分析在线互动,以阐明这种新环境中的社会行为,并从其提供的丰富数据中受益。然而,社交互动极其复杂,因此在任何环境下对其进行分析和建模都不容易。幸运的是,贝叶斯概率方法为数据提供了丰富、灵活的生成模型,可用于对复杂、高度结构化的社交互动进行建模。一般来说,贝叶斯方法为推理不确定的世界提供了一个原则框架。贝叶斯潜变量模型使我们能够推理或发现我们所观察到的潜在相当复杂、未观察到的结构。这项研究开发的方法可以发现对在线发生的复杂社交互动进行建模所必需的未观察到的结构,探索群体互动,评估环境如何影响社交互动,并探索社会影响力。这项工作有可能改善科学(例如通过改善远程合作)、商业(例如通过确定企业应该向谁通报其产品)和整个社会(例如通过改善社交网络)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine Heller其他文献
OTC Product: BioSafe Diabetes Risk Assessment
- DOI:
10.1331/japha.2008.08529 - 发表时间:
2008-07-01 - 期刊:
- 影响因子:
- 作者:
Katherine Heller - 通讯作者:
Katherine Heller
Performance of machine learning models for predicting high-severity symptoms in multiple sclerosis
- DOI:
10.1038/s41598-024-63888-x - 发表时间:
2025-05-25 - 期刊:
- 影响因子:3.900
- 作者:
Subhrajit Roy;Diana Mincu;Lev Proleev;Chintan Ghate;Jennifer S. Graves;David F. Steiner;Fletcher Lee Hartsell;Katherine Heller - 通讯作者:
Katherine Heller
Evaluating the Usability and Impact of an Artificial Intelligence-Powered Clinical Decision Support System for Depression Treatment
- DOI:
10.1016/j.biopsych.2020.02.451 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Myriam Tanguay-Sela;David Benrimoh;Kelly Perlman;Sonia Israel;Joseph Mehltretter;Caitrin Armstrong;Robert Fratila;Sagar Parikh;Jordan Karp;Katherine Heller;Ipsit Vahia;Daniel Blumberger;Sherif Karama;Simone Vigod;Gail Myhr;Ruben Martins;Colleen Rollins;Christina Popescu;Eryn Lundrigan;Emily Snook - 通讯作者:
Emily Snook
OTC Product: SinuCleanse for Rhinosinusitis
- DOI:
10.1331/154434506775268607 - 发表时间:
2006-01-01 - 期刊:
- 影响因子:
- 作者:
Katherine Heller - 通讯作者:
Katherine Heller
The Case for Globalizing Fairness: A Mixed Methods Study on Colonialism, AI, and Health in Africa
全球化公平案例:关于非洲殖民主义、人工智能和健康的混合方法研究
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
M. Asiedu;Awa Dieng;Alexander Haykel;Negar Rostamzadeh;Stephen R. Pfohl;Chirag Nagpal;Maria Nagawa;Abigail Oppong;Sanmi Koyejo;Katherine Heller - 通讯作者:
Katherine Heller
Katherine Heller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine Heller', 18)}}的其他基金
CAREER: Interacting Dynamic Bayesian Models for Social Behavior and Reasoning
职业:社会行为和推理的互动动态贝叶斯模型
- 批准号:
1553465 - 财政年份:2016
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
BRAIN EAGER: Integrative Cross-Modal and Cross-Species Brain Models: Motivation and Reward
BRAIN EAGER:综合跨模式和跨物种大脑模型:动机和奖励
- 批准号:
1451017 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Bayesian Models of Social Behavior Using Online Resources
使用在线资源的社会行为贝叶斯模型
- 批准号:
1339593 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Beyond Clustering: Unsupervised Modeling with Complex Representations
超越聚类:具有复杂表示的无监督建模
- 批准号:
EP/E042694/1 - 财政年份:2008
- 资助金额:
$ 24万 - 项目类别:
Fellowship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CRII: AF: RUI: Algorithmic Fairness for Computational Social Choice Models
CRII:AF:RUI:计算社会选择模型的算法公平性
- 批准号:
2348275 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
LEAPS-MPS: Development of Models in Spatial Statistics for Complex Policing and Social Science Applications
LEAPS-MPS:复杂警务和社会科学应用的空间统计模型的开发
- 批准号:
2316857 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Unstable nucleus accumbens social representations in models of social behavioral dysfunction.
不稳定的伏核在社会行为功能障碍模型中具有社会表征。
- 批准号:
10735723 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Design for Sustainability: How Mental Models of Social-Ecological Systems Shape Engineering Design Decisions
可持续性设计:社会生态系统的心理模型如何影响工程设计决策
- 批准号:
2300977 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Analytical Models for Conversational Social Engineering Attacks
协作研究:SaTC:核心:小型:对话式社会工程攻击的分析模型
- 批准号:
2319802 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
International comparison of non-profit organizations addressing child poverty: exploring the social implementation of support models
解决儿童贫困问题的非营利组织的国际比较:探索支持模式的社会实施
- 批准号:
23K02242 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SaTC: CORE: Small: Analytical Models for Conversational Social Engineering Attacks
协作研究:SaTC:核心:小型:对话式社会工程攻击的分析模型
- 批准号:
2319803 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Use of dynamic network models to explore the role of social media use in HIV transmission and health promotion among gay men and other MSM
使用动态网络模型探讨社交媒体的使用在男同性恋者和其他 MSM 中艾滋病毒传播和健康促进中的作用
- 批准号:
MR/S020462/2 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Fellowship
The Influence of Climate, Social Networks, and Cultural Models on the Retention of Women and Racially/Ethnically Marginalized Engineers in Graduate School and the Workforce
气候、社交网络和文化模式对研究生院和劳动力中女性和种族/民族边缘化工程师保留的影响
- 批准号:
2301217 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Predictive Models for Opioid Use Disorder Using Genomic, Social, and Clinical Factors
使用基因组、社会和临床因素的阿片类药物使用障碍的预测模型
- 批准号:
10797165 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别: