EAGER: Improving the Quality and Editability of 2D and 3D Shapes via Crowdsourcing and Self-Crowdsourcing

EAGER:通过众包和自我众包提高 2D 和 3D 形状的质量和可编辑性

基本信息

  • 批准号:
    1451198
  • 负责人:
  • 金额:
    $ 7.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Two-dimensional curves and three-dimensional surfaces lie at the core of computer graphics, but current approaches to creating and editing them are limited by the user's expertise. Many of these tasks can be performed by anyone at a basic level, but expert performance is difficult to achieve. The PI's goal in this exploratory research is to seek ways to transcend this limitation based on crowdsourcing, in which a crowd surpasses the skill of the individual (by many individuals each contributing a single input), and an individual surpasses his or her own abilities (by contributing many inputs) in what might be termed self-crowdsourcing (the PI points out it has been shown that the improving effects of crowdsourcing apply even to a crowd of one). Project outcomes will positively impact not only the myriad applications of computer-aided design but also fields such as computer-assisted surgery, where the quality of a cutting path can take on life-or-death importance. Individuals with a variety of motor impairments should also benefit from the ability to achieve high-quality physical performance in tasks as routine as signing a document. To ensure broad dissemination of his findings, the PI will open source the software developed as part of this research.The PI's approach is interdisciplinary, fusing human-computer interaction, experimental psychology, and computer graphics. The wisdom of crowds has been studied for scenarios where a single number is estimated, such as the weight or price of an item; however, techniques for averaging (or otherwise aggregating) high-dimensional physical or creative inputs have not been studied. This research will involve three complementary thrusts: divide-and-conquer approaches for combining small contributions from a crowd of (novice) individuals to create a high-quality 3D shape from a 2D image; algorithms for preserving the temporal record of image and shape creation in a reusable representation called a time channel, to improve editability; and algorithms for aggregating repeated 2D and 3D curve drawings (self-crowdsourcing). The work will lay the foundation for an understanding of the limits of crowdsourcing; in particular, the crowdsourced 2D-to-3D algorithm will test several long-standing hypotheses relating to novice creation of 3D shapes.
二维曲线和三维曲面是计算机图形学的核心,但目前创建和编辑它们的方法受到用户专业知识的限制。 这些任务中的许多都可以由任何人在基本水平上执行,但专家性能很难实现。 PI在这项探索性研究中的目标是寻求基于众包的方法来超越这种限制,其中群体超越了个人的技能(由许多个人各自贡献一个输入),一个人超越了他或她自己的能力(通过提供许多投入),(PI指出,已经表明,众包的改善效果甚至适用于一个人的人群)。 项目成果不仅将对计算机辅助设计的无数应用产生积极影响,还将对计算机辅助手术等领域产生积极影响,在这些领域,切割路径的质量可能具有生死攸关的重要性。 有各种运动障碍的人也应该从在签署文件等例行任务中实现高质量身体表现的能力中受益。 为了确保他的研究结果得到广泛传播,PI将开放作为这项研究的一部分开发的软件。PI的方法是跨学科的,融合了人机交互,实验心理学和计算机图形学。 群体智慧已经被研究用于估计单个数字的场景,例如物品的重量或价格;然而,用于平均(或以其他方式聚合)高维物理或创造性输入的技术尚未被研究。 这项研究将涉及三个互补的推力:分而治之的方法,结合小的贡献,从一群(新手)个人创建一个高质量的3D形状从2D图像;算法,保留图像和形状创建的时间记录在一个可重用的表示称为时间通道,以提高可编辑性;以及用于聚合重复的2D和3D曲线绘图的算法(自众包)。 这项工作将为理解众包的局限性奠定基础;特别是,众包的2D到3D算法将测试与新手创建3D形状有关的几个长期存在的假设。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yotam Gingold其他文献

Yotam Gingold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yotam Gingold', 18)}}的其他基金

CAREER: Direct Manipulation of Numerical Optimization for Structured Geometry Creation
职业:直接操作数值优化以创建结构化几何
  • 批准号:
    1453018
  • 财政年份:
    2015
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Continuing Grant

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Improving water quality modelling by better understanding solute transport
通过更好地了解溶质迁移来改进水质建模
  • 批准号:
    DP230100618
  • 财政年份:
    2023
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Discovery Projects
Improving discharges of people experiencing homelessness from hospital: a quality improvement project embedded in a stepped wedge design
改善无家可归者出院情况:嵌入阶梯式楔形设计的质量改进项目
  • 批准号:
    487672
  • 财政年份:
    2023
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Operating Grants
Improving equity in healthcare quality through hospital safety monitoring systems
通过医院安全监控系统提高医疗质量的公平性
  • 批准号:
    489617
  • 财政年份:
    2023
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Operating Grants
Optimising CNC Machine Tool Coolant Fluid condition to prolong usage and efficiency of an expensive essential resource thereby reducing cost, improving production quality and protecting operators using a unique and innovative Coolant Monitoring Analyser
使用独特和创新的冷却液监测分析仪优化数控机床冷却液条件,延长昂贵的重要资源的使用时间和效率,从而降低成本、提高生产质量并保护操作员
  • 批准号:
    10075142
  • 财政年份:
    2023
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Grant for R&D
Machine Learning for Improving Product Quality in Advanced Manufacturing
机器学习提高先进制造中的产品质量
  • 批准号:
    10073076
  • 财政年份:
    2023
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Grant for R&D
Improving Quality of Care for Persons with Dementia in Nursing Homes – Evaluation of the National Background Check Program
提高疗养院痴呆症患者的护理质量 — 对国家背景调查计划的评估
  • 批准号:
    10662838
  • 财政年份:
    2023
  • 资助金额:
    $ 7.01万
  • 项目类别:
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Socially Informed Traffic Signal Control for Improving Near Roadway Air Quality
合作研究:CISE-MSI:RCBP-RF:CPS:用于改善附近道路空气质量的社会知情交通信号控制
  • 批准号:
    2318696
  • 财政年份:
    2023
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Improving Software Quality by Automatically Reproducing Failures from Bug Reports
协作研究:SHF:中:通过自动重现错误报告中的故障来提高软件质量
  • 批准号:
    2403747
  • 财政年份:
    2023
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Continuing Grant
Improving carer’s quality of life and quality of care
提高护理人员的生活质量和护理质量
  • 批准号:
    IE230100675
  • 财政年份:
    2023
  • 资助金额:
    $ 7.01万
  • 项目类别:
    Early Career Industry Fellowships
Improving Healthcare Quality and Equity For Older Adults with HIV Under Value-Based Care Models
在基于价值的护理模式下提高艾滋病毒感染者的医疗质量和公平性
  • 批准号:
    10762522
  • 财政年份:
    2023
  • 资助金额:
    $ 7.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了