CAREER: Developmental Network Architecture Underlies Patterning Precision and Robustness
职业:发展网络架构是图案精度和稳健性的基础
基本信息
- 批准号:1452557
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-15 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
All animals begin as a single fertilized cell. During development, this cell divides and its progeny turn on distinct subsets of genes to build different types of cells like those in muscles, nerves and blood. This process is precise; tissues and organs are the correct size and shape and they occur in the correct position. This process is also robust; development unfolds accurately under a wide range of environmental and genetic assaults. Yet changes to animal physiology in disease or evolution are often due to alterations to development. This award addresses this critical paradox: how does development both buffer against change, and yet respond and adapt to change to produce new creatures? With respect to broader impacts, fewer than 10% of entering life science Ph.D. candidates will attain tenure-track academic jobs. Scientific training must therefore include skills that are useful in academia, government and the private sector. This award will support efforts to teach scientists how to communicate effectively, which is a fundamental and universally valued skill. The principal investigator will expand the scope of an innovative graduate course she directs, tailor it for undergraduates, and make modular materials available online so that other people can deploy it. This teaching effort will lead to a new generation of scientists adept at communicating across disciplines and with the public, and with skills that are highly valued in careers outside of academia. The central hypothesis is that developmental precision and robustness are encoded in the circuits of gene regulatory networks, and by extension, the regulatory DNA that wires them together. By studying how such circuits are built, and how they behave under perturbation, we can learn how they can be precise, robust and yet evolvable. Shadow enhancers, distinct pieces of regulatory DNA that drive the same target gene expression pattern, increase the precision and robustness of developmental systems but the mechanism is unknown. The DePace lab conducts their studies of gene regulatory networks in fruitfly embryos because the rules governing development are extremely similar between fruitflies and other animals, including humans, but fruitfly embryos offer substantial experimental advantages for deciphering the underlying principles. The DePace lab recently uncovered a pair of shadow enhancers in fruitfly embryos that respond to the same regulator in opposite ways. This project will interrogate the function of this novel circuit using quantitative experiments and computational models. Aim 1 will determine how the activity of the bifunctional regulator (a transcription factor) is controlled. Aim 2 will determine how the circuit affects patterning precision and robustness in the embryo. This research will: 1) probe the molecular mechanism of transcription factor bifunctionality, a general problem in interpreting the genome, 2) determine the role of a novel transcriptional circuit in embryonic patterning precision and robustness and 3) establish a powerful model for studying the mechanism and consequences of distributed regulatory DNA, which is a significant but under-studied class.
所有动物都是从单个受精细胞开始的。在发育过程中,这种细胞分裂,其后代启动不同的基因亚组,以建立不同类型的细胞,如肌肉、神经和血液中的细胞。这个过程是精确的;组织和器官的大小和形状是正确的,它们出现在正确的位置。这一进程也是稳健的;在广泛的环境和基因攻击下,发展准确地展开。然而,疾病或进化中动物生理的变化往往是由于发育的变化。这个奖项解决了这个关键的悖论:发展如何既缓冲变化,又响应和适应变化,以产生新的生物?就更广泛的影响而言,进入生命科学领域的博士生中,只有不到10%的人会获得终身教职。因此,科学培训必须包括对学术界、政府和私营部门有用的技能。该奖项将支持教授科学家如何有效沟通的努力,这是一项基本的和普遍重视的技能。首席研究员将扩大她指导的一门创新研究生课程的范围,为本科生量身定做,并在网上提供模块化材料,以便其他人可以部署它。这种教学努力将造就新一代的科学家,他们擅长跨学科和与公众沟通,并拥有在学术界以外的职业中高度重视的技能。中心假设是发育的精确度和稳健性编码在基因调控网络的电路中,进而编码在将它们连接在一起的调控DNA中。通过研究这种电路是如何构建的,以及它们在扰动下的行为,我们可以了解到它们是如何精确、健壮和可进化的。影子增强剂是驱动相同靶基因表达模式的不同调控DNA片段,可以提高发育系统的精确度和稳健性,但其机制尚不清楚。DePace实验室对果蝇胚胎中的基因调控网络进行了研究,因为果蝇和包括人类在内的其他动物的发育规则极其相似,但果蝇胚胎为破译潜在原理提供了实质性的实验优势。DePace实验室最近在果蝇胚胎中发现了一对阴影增强剂,它们以相反的方式对同一调节剂做出反应。本项目将使用定量实验和计算模型来研究这种新型电路的功能。目标1将确定双功能调节因子(一种转录因子)的活性是如何控制的。目标2将确定电路如何影响胚胎中的图案精确度和健壮性。本研究将:1)探索转录因子双功能的分子机制,这是解释基因组中的一个普遍问题;2)确定一个新的转录回路在胚胎模式精确度和稳健性中的作用;3)建立一个强大的模型来研究分布式调控DNA的机制和后果,这是一个重要但研究不足的类别。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angela DePace其他文献
Angela DePace的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angela DePace', 18)}}的其他基金
Collaborative Research: NSF/MCB: Kinetic Control of the Transcription Cycle Revealed by Synthetic Enhancers
合作研究:NSF/MCB:合成增强剂揭示的转录周期动力学控制
- 批准号:
1715184 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似海外基金
A Theoretical and Historical Research on the Developmental Process of the Knowledge of and the Knowledge Network of Phenomenological Sociology
现象社会学知识及其知识网络发展过程的理论与历史研究
- 批准号:
23H00886 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Developmental trajectories of brain rhythm dynamics in healthy adolescent rats: oscillatory network reconfigurations at the vulnerable age of schizophrenia prodrome
健康青少年大鼠脑节律动态的发育轨迹:精神分裂症前驱症状脆弱年龄的振荡网络重构
- 批准号:
10646175 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Developmental trajectories of brain rhythm dynamics in healthy adolescent rats: oscillatory network reconfigurations at the vulnerable age of schizophrenia prodrome
健康青少年大鼠脑节律动态的发育轨迹:精神分裂症前驱症状脆弱年龄的振荡网络重构
- 批准号:
10373688 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Thalamocortical network dysfunction in a novel genetic model of GRIN2D developmental and epileptic encephalopathy
GRIN2D 发育性和癫痫性脑病新型遗传模型中的丘脑皮质网络功能障碍
- 批准号:
10195508 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Treatment and prognosis of the developmental disorders- a Baysien network analysis
发育障碍的治疗和预后——Baysien 网络分析
- 批准号:
21K02728 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developmental Trajectories of Brain Network Strength and Flexibility: Relationship to Risk, Onset and Course of Depression and Self-Harm in Youth
大脑网络强度和灵活性的发展轨迹:与青少年抑郁和自残风险、发作和过程的关系
- 批准号:
10226490 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Developmental Trajectories of Brain Network Strength and Flexibility: Relationship to Risk, Onset and Course of Depression and Self-Harm in Youth
大脑网络强度和灵活性的发展轨迹:与青少年抑郁和自残风险、发作和过程的关系
- 批准号:
10402314 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Developmental Trajectories of Brain Network Strength and Flexibility: Relationship to Risk, Onset and Course of Depression and Self-Harm in Youth
大脑网络强度和灵活性的发展轨迹:与青少年抑郁和自残风险、发作和过程的关系
- 批准号:
10601072 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Analysis of a Model Developmental Gene Regulatory Network
模型发育基因调控网络分析
- 批准号:
2004952 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
The analysis of network in the brain for establishment to artistic expression as a developmental-support-program
大脑网络分析,以建立艺术表达作为发展支持计划
- 批准号:
20K02706 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)