CAREER: Hierarchical Probabilistic Models for Networks with Rich Data in Scientific Domains
职业:科学领域中具有丰富数据的网络的分层概率模型
基本信息
- 批准号:1452718
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will create advanced algorithms for automatically extracting and evaluating the hierarchical organization of real-world networks. Networks are a ubiquitous feature of complex social and biological systems, including species or genetic interaction networks, online social or offline friendship networks, and more. Interest in networks now spans nearly every scientific discipline. Increasingly, however, answering key scientific questions about complex networks requires new algorithms that can automatically extract their underlying organizational patterns from rich network data, and connect these patterns with scientific hypotheses. This project creates computational methods that can, for example, recursively separate a network's core from its periphery, distinguish local and global connectivity patterns within a network, and relate these patterns to auxiliary information about vertex attributes and connection strengths and types.In particular, this project will use state-of-the-art probabilistic generative models to: (1) Create advanced algorithms that automatically extract general forms of hierarchical patterns in connectivity, in a manner that is readily interpretable by scientists; (2) Create evaluation methods for distinguishing between alternative structural patterns and for detecting random patterns; (3) Characterize their limitations when applied to answer broad classes of scientific questions and data types, and; (4) Apply these algorithms, in collaboration with domain experts, to answer specific questions about the structure and function of real networks, for example, interactions among biological species, gene recombinations in human pathogenic species, and social interactions among humans. The results of this project will generate new insights into a wide variety of socially and biologically important domains.In addition to creating advanced algorithms with broad applications across science, this project will train new graduate and undergraduate students in cutting-edge research techniques within the interdisciplinary field of network science, develop and disseminate new educational material on network science, disseminate public-domain software implementations of algorithms, and address real scientific questions in collaboration with scientists from physics, biology, public health, and statistics.
该项目将创建用于自动提取和评估现实世界网络的分层组织的高级算法。网络是复杂的社会和生物系统的普遍特征,包括物种或遗传相互作用网络、在线社会或线下友谊网络等。现在,几乎所有的科学学科都对网络产生了兴趣。然而,回答有关复杂网络的关键科学问题越来越需要新的算法,这些算法可以从丰富的网络数据中自动提取其潜在的组织模式,并将这些模式与科学假设联系起来。这个项目创建的计算方法可以递归地将网络的核心与其外围分离,区分网络中的局部和全局连接模式,并将这些模式与关于顶点属性和连接强度和类型的辅助信息相关联。特别是,该项目将使用最先进的概率生成模型来:(1)创建以科学家易于解释的方式自动提取连接中的层次模式的一般形式的高级算法;(2)创建用于区分可选结构模式和用于检测随机模式的评估方法;(3)描述它们在应用于回答广泛类别的科学问题和数据类型时的局限性,以及(4)与领域专家合作,应用这些算法来回答关于真实网络的结构和功能的具体问题,例如生物物种之间的相互作用、人类致病物种中的基因重组以及人类之间的社会互动。该项目的成果将对广泛的社会和生物重要领域产生新的见解。除了创建在科学上具有广泛应用的先进算法之外,该项目还将培训新的研究生和本科生在网络科学跨学科领域的尖端研究技术,开发和传播关于网络科学的新教育材料,传播算法的公共领域软件实现,并与来自物理、生物、公共卫生和统计学的科学家合作解决真正的科学问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Clauset其他文献
Molecular modeling of mono- and bis-quaternary ammonium salts as ligands at the α4β2 nicotinic acetylcholine receptor subtype using nonlinear techniques
- DOI:
10.1208/aapsj070368 - 发表时间:
2005-09-01 - 期刊:
- 影响因子:3.700
- 作者:
Joshua T. Ayers;Aaron Clauset;Jeffrey D. Schmitt;Linda P. Dwoskin;Peter A. Crooks - 通讯作者:
Peter A. Crooks
Gendered hiring and attrition on the path to parity for academic faculty
学术教师平等之路上的性别聘用和减员
- DOI:
10.1101/2023.10.13.562268 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nicholas LaBerge;K. H. Wapman;Aaron Clauset;D. Larremore - 通讯作者:
D. Larremore
Gender and racial diversity socialization in science
科学中的性别和种族多样性社会化
- DOI:
10.1038/s43588-025-00795-9 - 发表时间:
2025-04-17 - 期刊:
- 影响因子:18.300
- 作者:
Weihua Li;Hongwei Zheng;Jennie E. Brand;Aaron Clauset - 通讯作者:
Aaron Clauset
Aaron Clauset的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Clauset', 18)}}的其他基金
Assessing Bias and Idiosyncrasies in Elite Scientific Peer Review
评估精英科学同行评审中的偏见和特质
- 批准号:
2219609 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Workshop: A New Synthesis for the Science of Science
研讨会:科学的新综合
- 批准号:
2006355 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Evaluating and Maximizing Fairness in Information Flow on Networks
III:媒介:协作研究:评估和最大化网络信息流的公平性
- 批准号:
1956183 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: Academic hiring networks and scientific productivity across disciplines
协作研究:跨学科的学术招聘网络和科学生产力
- 批准号:
1633791 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
丙烷脱氢Pt@hierarchical zeolite催化剂的设计制备与反应调控
- 批准号:22178062
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Probabilistic forecasting of train ticket booking demand with hierarchical correlations
具有层次相关性的火车票预订需求概率预测
- 批准号:
573339-2022 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Alliance Grants
Probabilistic Earthquake Seismology for Broadband and Hierarchical Seismic Source
宽带和分层震源的概率地震学
- 批准号:
21H04505 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
NRI: Collaborative Research: A Framework for Hierarchical, Probabilistic Planning and Learning
NRI:协作研究:分层、概率规划和学习的框架
- 批准号:
1637937 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
NRI: Collaborative Research: A Framework for Hierarchical, Probabilistic Planning and Learning
NRI:协作研究:分层、概率规划和学习的框架
- 批准号:
1637614 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
RI: Small: Probabilistic Hierarchical Models for Multi-Task Visual Recognition
RI:小型:多任务视觉识别的概率分层模型
- 批准号:
1618903 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Hierarchical frame induction via probabilistic models (B08)
通过概率模型进行分层框架归纳(B08)
- 批准号:
277161426 - 财政年份:2015
- 资助金额:
$ 55万 - 项目类别:
Collaborative Research Centres
SHF: Small: A Hierarchical Symbolic Framework to Verify Logic, Timing, and Probabilistic Properties of Computing Systems
SHF:小型:用于验证计算系统的逻辑、时序和概率属性的分层符号框架
- 批准号:
1442586 - 财政年份:2014
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Establishing Equivalent Transformation from Syntactic Parsing Models to Hierarchical Probabilistic Automaton
建立从句法解析模型到层次概率自动机的等价变换
- 批准号:
24800004 - 财政年份:2012
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
RI: Small: Hierarchical Probabilistic Layers for Visual Recognition of Complex Objects
RI:小:用于复杂对象视觉识别的分层概率层
- 批准号:
1116411 - 财政年份:2011
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
SHF: Small: A Hierarchical Symbolic Framework to Verify Logic, Timing, and Probabilistic Properties of Computing Systems
SHF:小型:用于验证计算系统的逻辑、时序和概率属性的分层符号框架
- 批准号:
1018057 - 财政年份:2010
- 资助金额:
$ 55万 - 项目类别:
Standard Grant