III: Medium: Collaborative Research: Evaluating and Maximizing Fairness in Information Flow on Networks
III:媒介:协作研究:评估和最大化网络信息流的公平性
基本信息
- 批准号:1956183
- 负责人:
- 金额:$ 39.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Social networks (whom you know and whom you can reach) help determine access to hiring opportunities, education, and health information. They encode social capital based on network position, and in an era where access to information is crucial for advancement, this social capital can be immensely valuable. In this project, we study interventions on social networks that mitigate access inequality, that is, differences in access to information that emerge from where you are in the network. This project will develop novel mathematical and computational models to characterize how differences in position in a social network can amplify inequalities of access, and techniques to change the structure of the network that both increase the flow of information and reduce the overall inequities. Finally, the project will develop experimental methodology to assess the behavior of human agents in such online social networks to assess the validity of the designed interventions. The project will support the mentoring and training of underrepresented populations of undergraduate and graduate students, as well as the dissemination of the work through open-source software repositories and event organization at the top research venues in the field. We will develop mathematical and computational tools for the analysis of fairness in information access on networks. From there, we will characterize the algorithmic difficulty of mitigating information access gaps, develop efficient estimators to predict such gaps, and design intervention strategies to reduce these gaps. We will also consider how to characterize clusters of people who share similar access to information. More generally, we seek to connect the research on influence maximization to recent work on algorithmic fairness: the study of how automated procedures can perpetuate or exacerbate existing structural disadvantages of marginalized groups. The algorithms and results developed through these efforts will be evaluated using a combination of theoretical models, network repositories maintained by the PIs, real-world social network datasets, and experiments with volunteer participants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社交网络(你认识的人和你能联系到的人)有助于确定招聘机会、教育和健康信息的获取途径。他们根据网络地位对社会资本进行编码,在一个获取信息对进步至关重要的时代,这种社会资本可能非常有价值。在这个项目中,我们研究了对社交网络的干预,以缓解访问不平等,即从您所在的网络中出现的获取信息的差异。该项目将开发新的数学和计算模型,以表征社交网络中位置的差异如何放大访问不平等,以及改变网络结构的技术,既增加信息流动,又减少总体不平等。最后,该项目将开发实验方法来评估人类代理人在此类在线社交网络中的行为,以评估设计的干预措施的有效性。该项目将支持对人数不足的本科生和研究生群体进行指导和培训,并通过开放源码软件库和在该领域的顶级研究场所组织活动来传播这项工作。我们将开发数学和计算工具,用于分析网络信息访问的公平性。从那里,我们将表征缓解信息获取差距的算法难度,开发有效的估计器来预测这些差距,并设计干预策略来缩小这些差距。我们还将考虑如何描述共享相似信息获取途径的人群的特征。更广泛地说,我们试图将关于影响力最大化的研究与最近关于算法公平的工作联系起来:研究自动化程序如何延续或加剧边缘化群体现有的结构性劣势。通过这些努力开发的算法和结果将使用理论模型、由PI维护的网络存储库、真实世界的社交网络数据集和志愿者参与者的实验相结合进行评估。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Clauset其他文献
Molecular modeling of mono- and bis-quaternary ammonium salts as ligands at the α4β2 nicotinic acetylcholine receptor subtype using nonlinear techniques
- DOI:
10.1208/aapsj070368 - 发表时间:
2005-09-01 - 期刊:
- 影响因子:3.700
- 作者:
Joshua T. Ayers;Aaron Clauset;Jeffrey D. Schmitt;Linda P. Dwoskin;Peter A. Crooks - 通讯作者:
Peter A. Crooks
Gendered hiring and attrition on the path to parity for academic faculty
学术教师平等之路上的性别聘用和减员
- DOI:
10.1101/2023.10.13.562268 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Nicholas LaBerge;K. H. Wapman;Aaron Clauset;D. Larremore - 通讯作者:
D. Larremore
Gender and racial diversity socialization in science
科学中的性别和种族多样性社会化
- DOI:
10.1038/s43588-025-00795-9 - 发表时间:
2025-04-17 - 期刊:
- 影响因子:18.300
- 作者:
Weihua Li;Hongwei Zheng;Jennie E. Brand;Aaron Clauset - 通讯作者:
Aaron Clauset
Aaron Clauset的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Clauset', 18)}}的其他基金
Assessing Bias and Idiosyncrasies in Elite Scientific Peer Review
评估精英科学同行评审中的偏见和特质
- 批准号:
2219609 - 财政年份:2022
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
Workshop: A New Synthesis for the Science of Science
研讨会:科学的新综合
- 批准号:
2006355 - 财政年份:2020
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
Collaborative Research: Academic hiring networks and scientific productivity across disciplines
协作研究:跨学科的学术招聘网络和科学生产力
- 批准号:
1633791 - 财政年份:2016
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
CAREER: Hierarchical Probabilistic Models for Networks with Rich Data in Scientific Domains
职业:科学领域中具有丰富数据的网络的分层概率模型
- 批准号:
1452718 - 财政年份:2015
- 资助金额:
$ 39.2万 - 项目类别:
Continuing Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 39.2万 - 项目类别:
Standard Grant