CAREER: Supramolecular Polycondensation of Polymer Brushes via DNA Hybridization

职业:通过 DNA 杂交实现聚合物刷的超分子缩聚

基本信息

  • 批准号:
    1453255
  • 负责人:
  • 金额:
    $ 52.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYLiving organisms are very proficient at utilizing nanoscopic objects, such as proteins, as building blocks to create materials that they need. Indeed, protein-protein interactions are the foundation of all cells because they are highly directional, specific, and reversible; these are characteristics that synthetic chemists have yet to fully emulate. The goal of this project is to emulate some of the precision-assembly ability that natural proteins exhibit by extracting the requirements for such assembly, and recreating them in new forms accessible to modern polymer and organic chemistry. Towards this goal, the PI's team will design bottlebrush-like synthetic polymers (where long polymer molecules have short appendages across them like the bristles in a bottlebrush) and connect them with short strands of DNA. Because DNA recognition of a complementary strand is well defined, one can in principle design the interconnectivity of the brush polymers with one another accurately. With this approach, it is possible to create a new class of "superpolymers", i.e. polymers whose building blocks are nanoscale-sized polymeric objects. The PI will explore the kinds of superpolymers that can be formed, and identify rules governing their formation. Because of the specificity of DNA recognition, polymer building blocks with various properties, such as size, electrical conductivity, or biological interactions, can be linked together in a sequence-specific and spatially defined manner, to create functional materials previously difficult or impossible to access. This synthetic technique also has the potential to be mediated by innate nucleic acids in cells, and therefore has important implications in medicine. These research activities will intertwine with educational programs to provide laboratory training to graduate/undergraduate students (including undergraduates from institutions lacking research capabilities) and to promote learning and awareness in science-related careers among high school students and STEM teachers.TECHNICAL SUMMARYNanoscopic objects such as macromolecules and colloidal nanoparticles can form ordered structures when there exist attractive forces. Because sphere-like particles uniformly interact across their surfaces, directional assembly to form 1D or 2D structures represents a significant challenge. In this project, co-funded by the Polymers and Biomaterials Programs in the Division of Materials Research, the PI will utilize DNA recognition as a functional group-equivalent to program the bottom-up assembly of made-to-order polymeric building blocks that can interact with each other only in defined directions. These limited-valency building blocks will be used to study topologically regulated supramolecular polymerizations. The proposed self-assembly strategy involves the synthesis of triblock brush polymers as "macromonomers", which will be conjugated with nucleic acids. The hybridization between the nucleic acid strands allows the monomers to self-assemble head-to-tail, connecting them either linearly or with branching, to form higher order assemblies. By systematically studying a library of brush polymers with different side-chain length, DNA duplex, and reactive block length, mechanistic insights about linear assembly of the brush building blocks will be obtained. In addition, superpolymer sequence control will be studied using multiple monomer systems (e.g. AA+BB), paving the ground for creating multi-component functional materials. Concepts from polycondensation reactions that define small-molecule polymerization will be tested against superpolymer synthesis, utilizing mono- and multi-valency macromonomers, which are expected to provide control over architecture, average degree of polymerization, and chain-end functionality. The capabilities gained from this project will open a wide spectrum of designer materials whose sequential and topological characteristics are well-defined on the nanoscopic scale, and will bring about new knowledge in polymer science and create opportunities to study yet unknown properties.
非技术总结生物体非常擅长利用纳米级物体,如蛋白质,作为构建块来创建它们所需的材料。事实上,蛋白质-蛋白质相互作用是所有细胞的基础,因为它们具有高度的方向性、特异性和可逆性;这些特征是合成化学家尚未完全模仿的。该项目的目标是通过提取这种组装的要求,并以现代聚合物和有机化学可访问的新形式重新创建它们,来模拟天然蛋白质所表现出的一些精确组装能力。为了实现这一目标,PI的团队将设计类似于瓶刷的合成聚合物(其中长聚合物分子有短的附属物,就像瓶刷中的刚毛一样),并将它们与短链DNA连接起来。由于互补链的DNA识别是明确定义的,因此原则上可以精确地设计刷状聚合物彼此的互连性。通过这种方法,有可能产生一类新的“超聚合物”,即其构建块是纳米级聚合物物体的聚合物。PI将探索可以形成的超级聚合物的种类,并确定其形成的规则。由于DNA识别的特异性,具有各种性质(如大小、电导率或生物相互作用)的聚合物结构单元可以以序列特异性和空间限定的方式连接在一起,以产生以前难以或不可能获得的功能材料。这种合成技术也有可能由细胞中的先天核酸介导,因此在医学上具有重要意义。这些研究活动将与教育计划相结合,为研究生/本科生(包括缺乏研究能力的机构的本科生)提供实验室培训,并促进高中生和STEM教师在科学相关职业中的学习和意识。技术概述纳米物体,如大分子和胶体纳米颗粒,当存在吸引力时,可以形成有序结构。由于球形颗粒在其表面均匀地相互作用,因此定向组装以形成1D或2D结构是一个重大挑战。在该项目中,由材料研究部的聚合物和生物材料项目共同资助,PI将利用DNA识别作为功能组等效物来编程按顺序制造的聚合物构建块的自下而上组装,这些聚合物构建块只能在定义的方向上相互作用。这些有限价的积木将被用来研究拓扑调控的超分子聚合。所提出的自组装策略涉及合成三嵌段刷状聚合物作为“大分子单体”,其将与核酸缀合。核酸链之间的杂交允许单体头对尾地自组装,将它们线性地或分支地连接,以形成更高级的组装体。通过系统地研究具有不同侧链长度、DNA双链体和反应性嵌段长度的刷状聚合物的库,将获得关于刷状构建块的线性组装的机械见解。此外,还将使用多单体体系(如AA+BB)研究超级聚合物序列控制,为创建多组分功能材料奠定基础。定义小分子聚合的缩聚反应的概念将被测试对超级聚合物合成,利用单价和多价大分子单体,这是预期提供控制架构,平均聚合度,和链端功能。从该项目中获得的能力将打开一个广泛的设计材料,其顺序和拓扑特征在纳米尺度上得到了很好的定义,并将带来聚合物科学的新知识,并创造研究未知特性的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ke Zhang其他文献

CTR > 0.7 predicts the subgroup of lung adenocarcinomas ≤ 2 cm at risk of poor outcome treated by sublobar resection compared to lobar resection
CTR > 0.7 预测 ≤ 2 cm 的肺腺癌亚组与肺叶切除术相比,亚肺叶切除术治疗结果较差的风险
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Weiwei Jing;Qi Li;Meng;Yi Zhang;Sifan Chen;Ke Zhang;Dan Li;Min Zhao;Yineng Zheng;Wangjia Li;Yangying Wu;Hongbo Xu;Ziya Zhao;Shaolei Kang;Fajin Lv
  • 通讯作者:
    Fajin Lv
Extracellular pH-driven targeted multifunctional manganese arsenite delivery system for tumor imaging and therapy
用于肿瘤成像和治疗的细胞外 pH 驱动的靶向多功能亚砷酸锰输送系统
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Ke Zhang;Hongyu Lin;Junjie Mao;Xiangjie Luo;Ruixue Wei;Zhongzhen Su;Bin Zhou;Dan Li;Jinhao Gao;Hong Shan
  • 通讯作者:
    Hong Shan
Research on flatness errors evaluation based on artificial fish swarm algorithm and Powell method
基于人工鱼群算法和鲍威尔法的平面度误差评估研究
A method of operational effectiveness analysis for aerocraft base on L1 regularized logistic model
基于L1正则Logistic模型的飞机运行效能分析方法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tao Lin;Ke Zhang;N. Cui;Zhenbiao Tu
  • 通讯作者:
    Zhenbiao Tu
Evaluation of the AGCU Expressmarker 30 Kit composed of 31 loci for forensic application
对由 31 个位点组成的 AGCU Expressmarker 30 试剂盒进行法医应用评估
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Ke Zhang;Feng Song;Shuangshuang Wang;Xiaowen Wei;Haoyu Gu;Mingkun Xie;Yuxiang Zhou;Haibo Luo
  • 通讯作者:
    Haibo Luo

Ke Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ke Zhang', 18)}}的其他基金

Collaborative Research: The Evolution of Gas in Protoplanetary Disks
合作研究:原行星盘中气体的演化
  • 批准号:
    2205617
  • 财政年份:
    2022
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track B: Hyperlocal Services to Prepare Rural Communities for Extreme Weather-Related Natural Disasters
SCC-CIVIC-PG 轨道 B:超本地化服务,帮助农村社区做好应对极端天气相关自然灾害的准备
  • 批准号:
    2043863
  • 财政年份:
    2021
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Expanding the Biomaterials Space of DNA through Polymerization
通过聚合扩展 DNA 的生物材料空间
  • 批准号:
    2004947
  • 财政年份:
    2020
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
Toward a statewide public Internet of Things (IoT) network
迈向全州公共物联网 (IoT) 网络
  • 批准号:
    1952063
  • 财政年份:
    2020
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Smart Heat: Aggregating renewable-electric-heating-thermal-storage systems for grid services
智能热能:聚合可再生电热储热系统以提供电网服务
  • 批准号:
    1711546
  • 财政年份:
    2017
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Towards science-driven designs of transportation green infrastructure
实现交通绿色基础设施的科学驱动设计
  • 批准号:
    1605407
  • 财政年份:
    2016
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
An Energy-Resolving X-ray Fluorescence Detection System
能量分辨 X 射线荧光检测系统
  • 批准号:
    9896213
  • 财政年份:
    1998
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant
An Energy-Resolving X-ray Fluorescence Detection System
能量分辨 X 射线荧光检测系统
  • 批准号:
    9419635
  • 财政年份:
    1995
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Supramolecular mineralizing materials for dental tissue regeneration
用于牙组织再生的超分子矿化材料
  • 批准号:
    2534896
  • 财政年份:
    2025
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Studentship
Host-Guest Complexation: A Modular Approach for Structural Control (MAS-Control) in Supramolecular Polymerization
主客体络合:超分子聚合中结构控制(MAS-Control)的模块化方法
  • 批准号:
    EP/Y027965/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Fellowship
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
  • 批准号:
    2404011
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
  • 批准号:
    24K21101
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Organoborane Polymers and Supramolecular Materials
有机硼烷聚合物和超分子材料
  • 批准号:
    2404215
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Two-way shape-memory polymer design based on periodic dynamic crosslinks inducing supramolecular nanostructures
基于周期性动态交联诱导超分子纳米结构的双向形状记忆聚合物设计
  • 批准号:
    2342272
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
European Network on the Supramolecular Chemistry of Carbohydrates
欧洲碳水化合物超分子化学网络
  • 批准号:
    EP/Y028058/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Research Grant
NSF-BSF: Emergent Rheology of Blends Containing Supramolecular Polymers
NSF-BSF:含有超分子聚合物的共混物的新兴流变学
  • 批准号:
    2409077
  • 财政年份:
    2024
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Standard Grant
Supramolecular RNA therapeutics (SMRTs) - developing tunable formulations with scale-independent manufacture.
超分子 RNA 疗法 (SMRT) - 开发具有规模独立制造的可调配方。
  • 批准号:
    10069132
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Collaborative R&D
Development of peptide-linked supramolecular photocatalysts for Z-scheme artificial photosynthesis
用于Z型人工光合作用的肽连接超分子光催化剂的开发
  • 批准号:
    23K04784
  • 财政年份:
    2023
  • 资助金额:
    $ 52.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了