CAREER: Oxygen Reduction Catalysis at Tunable Metal Sulfide Nanofilms

职业:可调金属硫化物纳米膜的氧还原催化

基本信息

  • 批准号:
    1454060
  • 负责人:
  • 金额:
    $ 67.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

Renewable energy sources such as solar and wind will play an increasing role in meeting the growing energy demands of the future. However, these sources are intermittent, having reliable energy when the sun doesn't shine or wind doesn't blow requires storage in an energy dense form such as a chemical fuel. The fuel energy can then be released to produce electricity on demand in a fuel cell. Currently, fuel cells are expensive and unsustainable due to the high cost and scarcity of the platinum-based catalysts needed to convert fuel to electricity. This project aims to develop low-cost, non-toxic, earth-abundant catalysts to replace platinum in future fuel cells. The work will allow graduate and undergraduate students and postdoctoral fellows to learn the modern techniques in chemistry for renewable energy science and to collaborate to discover new catalysts. The research work will also be integrated with a broad-based outreach effort, The Catalyst Genome Project, which will allow amateur researchers of all ages to discover, evaluate, and collaborate in the search for new catalysts for renewable energy storage.With this award, the Chemical Catalysis Program of the Chemistry Division is funding Dr. Yogesh Surendranath of the Massachusetts Institute of Technology to systematically investigate the oxygen reduction reaction (ORR) mediated by late transition metal sulfide (MSx where M = Ni, Co, Fe) nanofilm electrocatalysts. Late transition metal sulfides (LTMSs) represent an attractive class of low-cost, earth-abundant ORR catalysts for low-temperature fuel cell cathodes but their development and optimization have been hampered by a lack of mechanistic understanding and an absence of fundamental design principles. The project will utilize a recently developed layer-by-layer chemical electrodeposition method for preparing nanometer-thick crystalline LTMS films to probe the active site structure and mechanism of ORR on these materials. From these studies, the work aims to extract broad periodic trends and overarching design principles that will be used to synthesize high-performance nanoparticulate LTMS ORR catalysts primed for integration into advanced fuel cell cathodes
太阳能和风能等可再生能源将在满足未来不断增长的能源需求方面发挥越来越大的作用。然而,这些能源是间歇性的,当太阳不发光或风不吹时,需要以能量密集的形式储存可靠的能量,如化学燃料。然后,燃料能量可以被释放以在燃料电池中按需产生电力。目前,由于将燃料转化为电力所需的铂基催化剂成本高且稀缺,燃料电池价格昂贵且不可持续。该项目旨在开发低成本,无毒,地球丰富的催化剂,以取代未来燃料电池中的铂。这项工作将使研究生、本科生和博士后研究员能够学习可再生能源科学的现代化学技术,并合作发现新的催化剂。这项研究工作还将与一项基础广泛的推广工作“催化剂基因组计划”相结合,该计划将允许所有年龄段的业余研究人员发现、评估和合作寻找可再生能源储存的新催化剂。化学部的化学催化计划正在资助马萨诸塞州理工学院的约格什·苏伦德拉纳特博士系统地研究氧气还原反应(ORR)介导的后过渡金属硫化物(MSx,其中M = Ni,Co,Fe)纳米膜电催化剂。后过渡金属硫化物(LTMS)代表了一类有吸引力的低成本,地球丰富的ORR催化剂的低温燃料电池阴极,但他们的发展和优化受到阻碍的缺乏机制的理解和缺乏基本的设计原则。该项目将利用最近开发的逐层化学电沉积方法制备纳米厚的结晶LTMS薄膜,以探测这些材料上的活性位点结构和ORR机制。从这些研究中,这项工作的目的是提取广泛的周期性趋势和总体设计原则,这些原则将用于合成高性能纳米颗粒LTMS ORR催化剂,以集成到先进的燃料电池阴极中

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yogesh Surendranath其他文献

A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy
美国关于封闭碳循环以实现我们经济中难以电气化部分脱碳的观点
  • DOI:
    10.1038/s41570-024-00587-1
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    51.700
  • 作者:
    Wendy J. Shaw;Michelle K. Kidder;Simon R. Bare;Massimiliano Delferro;James R. Morris;Francesca M. Toma;Sanjaya D. Senanayake;Tom Autrey;Elizabeth J. Biddinger;Shannon Boettcher;Mark E. Bowden;Phillip F. Britt;Robert C. Brown;R. Morris Bullock;Jingguang G. Chen;Claus Daniel;Peter K. Dorhout;Rebecca A. Efroymson;Kelly J. Gaffney;Laura Gagliardi;Aaron S. Harper;David J. Heldebrant;Oana R. Luca;Maxim Lyubovsky;Jonathan L. Male;Daniel J. Miller;Tanya Prozorov;Robert Rallo;Rachita Rana;Robert M. Rioux;Aaron D. Sadow;Joshua A. Schaidle;Lisa A. Schulte;William A. Tarpeh;Dionisios G. Vlachos;Bryan D. Vogt;Robert S. Weber;Jenny Y. Yang;Elke Arenholz;Brett A. Helms;Wenyu Huang;James L. Jordahl;Canan Karakaya;Kourosh (Cyrus) Kian;Jotheeswari Kothandaraman;Johannes Lercher;Ping Liu;Deepika Malhotra;Karl T. Mueller;Casey P. O’Brien;Robert M. Palomino;Long Qi;José A. Rodriguez;Roger Rousseau;Jake C. Russell;Michele L. Sarazen;David S. Sholl;Emily A. Smith;Michaela Burke Stevens;Yogesh Surendranath;Christopher J. Tassone;Ba Tran;William Tumas;Krista S. Walton
  • 通讯作者:
    Krista S. Walton
Innocent buffers reveal the intrinsic pH- and coverage-dependent kinetics of the hydrogen evolution reaction on noble metals
纯缓冲液揭示了贵金属上析氢反应的固有 pH 值和覆盖率依赖性动力学。
  • DOI:
    10.1016/j.joule.2022.01.007
  • 发表时间:
    2022-02-16
  • 期刊:
  • 影响因子:
    35.400
  • 作者:
    Onyu Jung;Megan N. Jackson;Ryan P. Bisbey;Nicole E. Kogan;Yogesh Surendranath
  • 通讯作者:
    Yogesh Surendranath
Wireless potentiometry of thermochemical heterogeneous catalysis
热化学多相催化的无线电位测定法
  • DOI:
    10.1038/s41929-025-01308-7
  • 发表时间:
    2025-04-02
  • 期刊:
  • 影响因子:
    44.600
  • 作者:
    Neil K. Razdan;Karl S. Westendorff;Yogesh Surendranath
  • 通讯作者:
    Yogesh Surendranath
Heterogeneous electrocatalysis goes chemical
多相电催化走向化学
  • DOI:
    10.1038/s41929-020-00570-1
  • 发表时间:
    2021-01-06
  • 期刊:
  • 影响因子:
    44.600
  • 作者:
    Shannon W. Boettcher;Yogesh Surendranath
  • 通讯作者:
    Yogesh Surendranath

Yogesh Surendranath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yogesh Surendranath', 18)}}的其他基金

CAS: Electrosynthesis via Electrochemical Hydrogen Permeation
CAS:通过电化学氢渗透进行电合成
  • 批准号:
    2102669
  • 财政年份:
    2021
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant

相似海外基金

CAS:Improving the Activity of Homogeneous Mn Catalysts for the Oxygen Reduction Reaction
CAS:提高均相锰催化剂的氧还原反应活性
  • 批准号:
    2348515
  • 财政年份:
    2024
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
CAS: Design and Mechanistic Understanding of Emerging Metal Chalcogenide Electrocatalysts for Selective Two-Electron Oxygen Reduction
CAS:用于选择性双电子氧还原的新兴金属硫属化物电催化剂的设计和机理理解
  • 批准号:
    2247519
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Continuing Grant
Oxygen reduction reaction (ORR) in fuel cells on carbon-based metal-free electrocatalysts by first-principles multiscale simulations.
通过第一原理多尺度模拟,在碳基无金属电催化剂上进行燃料电池中的氧还原反应(ORR)。
  • 批准号:
    22KJ2131
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
RUI: Molecular Alkali Metal Catalysts for Selective Reduction of Oxygen-Containing Functionalities
RUI:用于选择性还原含氧官能团的分子碱金属催化剂
  • 批准号:
    2247728
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
CAS: Dual-Site Relay Catalysis in Oxygen Reduction Reactions on Reducible Metal Oxide Heterojunction Structures
CAS:可还原金属氧化物异质结结构氧还原反应中的双位点中继催化
  • 批准号:
    2341158
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Nitrous oxide reduction in oxygen minimum zones: an understudied but critical loss term in ocean greenhouse gas cycling
合作研究:最低氧气区的一氧化二氮还原:海洋温室气体循环中一个尚未充分研究但至关重要的损失项
  • 批准号:
    2341290
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
Explore the Origin of the Oxygen Reduction Performance of Atomically Dispersed Transition Metal-Nitrogen-Carbon (M-N-C) Catalysts
探索原子分散过渡金属-氮-碳(M-N-C)催化剂氧还原性能的起源
  • 批准号:
    23K13703
  • 财政年份:
    2023
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study of oxygen reduction reaction of fuel cell cathode using oxygen adsorption structure analysis by high resolution XAFS
利用高分辨率 XAFS 氧吸附结构分析研究燃料电池阴极的氧还原反应
  • 批准号:
    22H02188
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAGER:CAS-Climate: Novel Non-Precious Metal Catalysts for Oxygen Reduction Reaction
EAGER:CAS-Climate: 用于氧还原反应的新型非贵金属催化剂
  • 批准号:
    2223984
  • 财政年份:
    2022
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
CAS: Developing Homogeneous Mn Catalyst Systems for the Oxygen Reduction Reaction
CAS:开发用于氧还原反应的均相锰催化剂体系
  • 批准号:
    2102156
  • 财政年份:
    2021
  • 资助金额:
    $ 67.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了