CAS: Electrosynthesis via Electrochemical Hydrogen Permeation
CAS:通过电化学氢渗透进行电合成
基本信息
- 批准号:2102669
- 负责人:
- 金额:$ 47.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the support of the Chemical Catalysis program in the Division of Chemistry, Yogesh Surendranath of the Massachusetts Institute of Technology is studying how to use renewable electricity to drive the production of value-added fuels and chemicals. Renewable energy sources such as solar and wind are poised to play an increasing role in meeting future demand for fuels and chemicals in a sustainable manner. Currently, technologies for converting electrical energy into fuels and chemicals are inefficient and often require complicated separation and processing steps. This project aims to develop new integrated strategies for driving chemical transformations with renewable electricity by intimately coupling catalysis and separations. The work will allow graduate and undergraduate students to learn the modern techniques of renewable energy science and collaborate to discover new catalysts and materials. The research work will also be integrated with a broad-based educational outreach effort that will employ a rhetoric-based framework to advance interactive learning, professional communication, and critical discourse in science.With the support of the Chemical Catalysis program in the Division of Chemistry, Yogesh Surendranath of the Massachusetts Institute of Technology is studying how to use renewable electricity to drive the synthesis of value-added fuels and chemicals. Electrosynthetic reduction reactions can be bifurcated into electrochemical proton-coupled electron transfer steps to generate reactive surface H-atoms that then hydrogenate substrates via coupled chemical reactions. In conventional electrocatalysts, the chemical and electrochemical steps are co-localized to the same interface preventing independent control of each. This proposal advances a new paradigm for electrocatalysis in which the reaction environment of bond activation can be completely decoupled from that of electrochemical charge separation. Independent optimization of each will expose fundamentally new reactivity in electrocatalysis that could form the bedrock of new electrosynthetic reactions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化项目的支持下,麻省理工学院的Yogesh Surendranath正在研究如何使用可再生电力来推动增值燃料和化学品的生产。太阳能和风能等可再生能源将以可持续的方式在满足未来对燃料和化学品的需求方面发挥越来越大的作用。目前,将电能转化为燃料和化学品的技术效率低下,而且往往需要复杂的分离和处理步骤。该项目旨在开发新的综合策略,通过密切耦合催化和分离来驱动可再生电力的化学转化。这项工作将使研究生和本科生学习可再生能源科学的现代技术,并合作发现新的催化剂和材料。研究工作还将与广泛的教育推广工作相结合,该工作将采用基于修辞学的框架来促进科学中的互动学习、专业交流和批判性话语。在化学系化学催化项目的支持下,麻省理工学院的Yogesh Surendranath正在研究如何使用可再生电力来驱动增值燃料和化学品的合成。电合成还原反应可以分为电化学质子耦合电子转移步骤,以产生反应性表面h原子,然后通过耦合化学反应使底物氢化。在传统的电催化剂中,化学和电化学步骤是共同定位在同一界面上的,防止了各自的独立控制。提出了一种新的电催化模式,在这种模式下,键激活的反应环境可以与电化学电荷分离的反应环境完全解耦。每一个独立的优化将从根本上揭示新的电催化反应性,这可能形成新的电合成反应的基石。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reaction environment impacts charge transfer but not chemical reaction steps in hydrogen evolution catalysis
反应环境影响电荷转移,但不影响析氢催化中的化学反应步骤
- DOI:10.1038/s41929-023-00943-2
- 发表时间:2023
- 期刊:
- 影响因子:37.8
- 作者:Tang, Bryan Y.;Bisbey, Ryan P.;Lodaya, Kunal M.;Toh, Wei Lun;Surendranath, Yogesh
- 通讯作者:Surendranath, Yogesh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yogesh Surendranath其他文献
A US perspective on closing the carbon cycle to defossilize difficult-to-electrify segments of our economy
美国关于封闭碳循环以实现我们经济中难以电气化部分脱碳的观点
- DOI:
10.1038/s41570-024-00587-1 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:51.700
- 作者:
Wendy J. Shaw;Michelle K. Kidder;Simon R. Bare;Massimiliano Delferro;James R. Morris;Francesca M. Toma;Sanjaya D. Senanayake;Tom Autrey;Elizabeth J. Biddinger;Shannon Boettcher;Mark E. Bowden;Phillip F. Britt;Robert C. Brown;R. Morris Bullock;Jingguang G. Chen;Claus Daniel;Peter K. Dorhout;Rebecca A. Efroymson;Kelly J. Gaffney;Laura Gagliardi;Aaron S. Harper;David J. Heldebrant;Oana R. Luca;Maxim Lyubovsky;Jonathan L. Male;Daniel J. Miller;Tanya Prozorov;Robert Rallo;Rachita Rana;Robert M. Rioux;Aaron D. Sadow;Joshua A. Schaidle;Lisa A. Schulte;William A. Tarpeh;Dionisios G. Vlachos;Bryan D. Vogt;Robert S. Weber;Jenny Y. Yang;Elke Arenholz;Brett A. Helms;Wenyu Huang;James L. Jordahl;Canan Karakaya;Kourosh (Cyrus) Kian;Jotheeswari Kothandaraman;Johannes Lercher;Ping Liu;Deepika Malhotra;Karl T. Mueller;Casey P. O’Brien;Robert M. Palomino;Long Qi;José A. Rodriguez;Roger Rousseau;Jake C. Russell;Michele L. Sarazen;David S. Sholl;Emily A. Smith;Michaela Burke Stevens;Yogesh Surendranath;Christopher J. Tassone;Ba Tran;William Tumas;Krista S. Walton - 通讯作者:
Krista S. Walton
Innocent buffers reveal the intrinsic pH- and coverage-dependent kinetics of the hydrogen evolution reaction on noble metals
纯缓冲液揭示了贵金属上析氢反应的固有 pH 值和覆盖率依赖性动力学。
- DOI:
10.1016/j.joule.2022.01.007 - 发表时间:
2022-02-16 - 期刊:
- 影响因子:35.400
- 作者:
Onyu Jung;Megan N. Jackson;Ryan P. Bisbey;Nicole E. Kogan;Yogesh Surendranath - 通讯作者:
Yogesh Surendranath
Wireless potentiometry of thermochemical heterogeneous catalysis
热化学多相催化的无线电位测定法
- DOI:
10.1038/s41929-025-01308-7 - 发表时间:
2025-04-02 - 期刊:
- 影响因子:44.600
- 作者:
Neil K. Razdan;Karl S. Westendorff;Yogesh Surendranath - 通讯作者:
Yogesh Surendranath
Heterogeneous electrocatalysis goes chemical
多相电催化走向化学
- DOI:
10.1038/s41929-020-00570-1 - 发表时间:
2021-01-06 - 期刊:
- 影响因子:44.600
- 作者:
Shannon W. Boettcher;Yogesh Surendranath - 通讯作者:
Yogesh Surendranath
Yogesh Surendranath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yogesh Surendranath', 18)}}的其他基金
CAREER: Oxygen Reduction Catalysis at Tunable Metal Sulfide Nanofilms
职业:可调金属硫化物纳米膜的氧还原催化
- 批准号:
1454060 - 财政年份:2015
- 资助金额:
$ 47.5万 - 项目类别:
Continuing Grant
相似海外基金
Emergent organocopper complexes as robust catalysts for electrosynthesis
新兴有机铜配合物作为电合成的强大催化剂
- 批准号:
DP240101902 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Discovery Projects
High-productivity ammonia electrosynthesis
高产氨电合成
- 批准号:
LP210301321 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Linkage Projects
Design of proton-conducting solid oxide electrolysis cells and electrochemical reactors for ammonia electrosynthesis systems
用于氨电合成系统的质子传导固体氧化物电解槽和电化学反应器的设计
- 批准号:
22KJ0807 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Solid State Protonic Electrosynthesis of Zero Carbon Fuels
零碳燃料的固态质子电合成
- 批准号:
2883181 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Studentship
High-performance ammonia electrosynthesis devices
高性能氨电合成装置
- 批准号:
IE230100449 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Early Career Industry Fellowships
Microfluidic devices for higher throughput electrosynthesis and flow battery characterization
用于更高通量电合成和液流电池表征的微流体装置
- 批准号:
RGPIN-2022-04670 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Discovery Grants Program - Individual
Targeting Ordered Heteroanionic Materials Using Electrosynthesis
利用电合成靶向有序杂阴离子材料
- 批准号:
DGECR-2022-00014 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Discovery Launch Supplement
Targeting Ordered Heteroanionic Materials Using Electrosynthesis
利用电合成靶向有序杂阴离子材料
- 批准号:
RGPIN-2022-04779 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Discovery Grants Program - Individual
Electrosynthesis of Ethylene for the chemical industry
化学工业用电合成乙烯
- 批准号:
568787-2021 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Alliance Grants
Electrochemical production of urea via pulsed electrosynthesis
通过脉冲电合成电化学生产尿素
- 批准号:
577145-2022 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Alliance Grants