CAREER: Modeling Polymer Electrolyte Microstructure: How Polymer Architecture Controls Ion Conduction

职业:聚合物电解质微观结构建模:聚合物结构如何控制离子传导

基本信息

  • 批准号:
    1454343
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYThis CAREER award supports theoretical and computational studies of polymeric materials for potential applications as non-flammable polymer electrolytes in a new generation of safe, lightweight batteries. The goal of this project is to develop and use innovative computational and theoretical tools to model ionic conductance in block copolymer based materials. In diblock copolymers, chains of the two different chemical types are connected together, forming a long chain molecule with different chemical composition on each end. If the two blocks are different, they phase separate (like oil and water) forming nanometer scale structures. Of special interest for future applications are diblock copolymers with added salts in which one block forms soft and the other forms hard domains. The softer domains conduct lithium ions (serving the purpose of the battery electrolyte), while the harder domains prevent the growth of lithium dendrites which can short-circuit the battery. The PI's group will focus on understanding how polymer structure controls final materials properties. The education and outreach part of this project builds on development of an interactive simulation setup with a 3D display and force-feedback joystick to communicate to students across the age groups and to the general public what polymers are and how their structure impacts material properties. The PI and members of her group will participate in the "Translating Engineering Research to K-8" (TEK8) program through the College of Engineering at OSU and use the existing infrastructure of Ohio State's STEAM Factory and Women in Engineering program to increase interest of underrepresented groups in science and engineering. TECHNICAL SUMMARYThis CAREER award supports research and educational activities with a focus on development of innovative computational tools for modeling ionic conductance in block copolymer based materials. The goal is to use theoretical techniques and computer modeling to elucidate the underlying physics behind the structure and conductance of polymeric materials and to guide future synthesis efforts. The experimental systems that inspire this research are nonflammable battery electrolytes that are inherently safer and could increase battery energy density while preventing lithium dendrite growth. The approach is designed to overcome difficulties associated with the multiple time and length scales of the problem due to complex polymer morphology, effects of packing of finite size ions and polymeric units, and the long-range electrostatic interactions between charged species. The theoretical approach will be based on the fluid density functional theory and simulation techniques will include molecular dynamics simulations of the coarse-grained models. To bridge multiple time and length scales the strategy will be to obtain the equilibrium polymer morphology from density functional calculations and to use this structure as a starting point for coarse-grained simulations. This approach will be applied to model material properties of diblock copolymers and tapered copolymers, in which a region with a gradient in monomer composition is added between two pure blocks. The goal of this approach is to efficiently sample parameter space and to show how the materials properties depend on polymer architecture, polymer morphology, and ion concentration. The education and outreach part of this project builds on development of an interactive simulation setup with a 3D display and force-feedback joystick to communicate to students across the age groups and to the general public what polymers are and how their structure impacts material properties. The PI and members of her group will participate in the "Translating Engineering Research to K-8" (TEK8) program through the College of Engineering at OSU and use the existing infrastructure of Ohio State's STEAM Factory and Women in Engineering program to increase interest of underrepresented groups in science and engineering.
非技术总结该职业奖支持聚合物材料的理论和计算研究,这些材料可作为新一代安全轻质电池中的不易燃聚合物电解质的潜在应用。这个项目的目标是开发和使用创新的计算和理论工具来模拟嵌段共聚物基材料的离子电导。在二嵌段共聚物中,两种不同化学类型的链连接在一起,形成在每一端具有不同化学组成的长链分子。如果这两个块体不同,它们会相分离(如油和水),形成纳米级结构。对未来应用特别感兴趣的是具有添加的盐的二嵌段共聚物,其中一个嵌段形成软域,另一个形成硬域。较软的畴传导锂离子(用于电池电解质的目的),而较硬的畴防止锂枝晶的生长,锂枝晶可以使电池短路。PI的团队将专注于了解聚合物结构如何控制最终材料的性能。 该项目的教育和推广部分建立在开发具有3D显示器和力反馈操纵杆的交互式模拟设置的基础上,以向各年龄组的学生和公众传达聚合物是什么以及它们的结构如何影响材料性能。PI和她的团队成员将通过俄勒冈州立大学工程学院参与“将工程研究转化为K-8”(TEK 8)计划,并利用俄亥俄州的蒸汽工厂和妇女在工程计划中的现有基础设施,以提高科学和工程中代表性不足的群体的兴趣。技术总结该职业奖支持研究和教育活动,重点是开发用于模拟嵌段共聚物基材料离子电导的创新计算工具。目标是使用理论技术和计算机建模来阐明聚合物材料的结构和导电性背后的基本物理学,并指导未来的合成工作。激发这项研究的实验系统是不易燃的电池电解质,本质上更安全,可以提高电池能量密度,同时防止锂枝晶生长。该方法的目的是克服困难与多个时间和长度尺度的问题,由于复杂的聚合物形态,包装的有限大小的离子和聚合物单元的影响,以及带电物种之间的远程静电相互作用。理论方法将以流体密度泛函理论为基础,模拟技术将包括粗粒模型的分子动力学模拟。为了桥接多个时间和长度尺度的策略将是从密度泛函计算中获得平衡聚合物形态,并将此结构用作粗粒度模拟的起点。这种方法将被应用到模型的二嵌段共聚物和递变共聚物,其中一个区域的单体组成的梯度之间添加两个纯嵌段的材料性能。这种方法的目标是有效地采样参数空间,并显示材料性能如何取决于聚合物结构,聚合物形态和离子浓度。该项目的教育和推广部分建立在开发具有3D显示器和力反馈操纵杆的交互式模拟设置的基础上,以向各年龄组的学生和公众传达聚合物是什么以及它们的结构如何影响材料性能。PI和她的团队成员将通过俄勒冈州立大学工程学院参与“将工程研究转化为K-8”(TEK 8)计划,并利用俄亥俄州的蒸汽工厂和妇女在工程计划中的现有基础设施,以提高科学和工程中代表性不足的群体的兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lisa Hall其他文献

Exceptionally long-lived nuclear RNAs
寿命极长的核 RNA
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Jeanne B Lawrence;Lisa Hall
  • 通讯作者:
    Lisa Hall
Technical Report A light touch; Reviewing the relative effectiveness of light sources and physical/chemical techniques for fingermark retrieval in casework
  • DOI:
    10.1016/j.fsir.2024.100391
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nicholas Marsh;Karen Marsh;Lisa Hall;Ruth Buckley;Stephen Bleay
  • 通讯作者:
    Stephen Bleay
Validation of an image analysis algorithm to quantify leukocyte populations using whole slide image analysis
  • DOI:
    10.1186/2051-1426-1-s1-p60
  • 发表时间:
    2013-11-01
  • 期刊:
  • 影响因子:
    10.600
  • 作者:
    Anthony J Milici;David Young;Steven J Potts;Holger Lange;Nicholas D Landis;Erik R Hagendorn;Sherri A Saturley;Lisa Hall;Joseph S Krueger
  • 通讯作者:
    Joseph S Krueger
The burden of community onset MRSA in Australia
  • DOI:
    10.1016/j.idh.2016.09.108
  • 发表时间:
    2016-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jessica Cameron;Lisa Hall;Teresa Wozniak;Kate Halton
  • 通讯作者:
    Kate Halton
Using a clinical governance framework to identify barriers to infection control practice
  • DOI:
    10.1016/j.idh.2016.09.122
  • 发表时间:
    2016-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kate Halton;Lisa Hall;Anne Gardner;Deborough MacBeth;Brett Mitchell
  • 通讯作者:
    Brett Mitchell

Lisa Hall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Postdoctoral Fellowship: MPS-Ascend: Coarse-Grained Modeling of Aggrecan- Mimetic Copolymers: Polymer Design and Architecture Effects on Structure and Phase Behavior
博士后奖学金:MPS-Ascend:聚集蛋白聚糖模拟共聚物的粗粒度建模:聚合物设计和结构对结构和相行为的影响
  • 批准号:
    2316666
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Fellowship Award
CAREER: Molecular Modeling of Ring Polymer Mechanics - Expanding Applicability of Ring Polymer
职业:环状聚合物力学的分子模拟 - 扩展环状聚合物的适用性
  • 批准号:
    2236693
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Mesoscale modeling of Controlled Degradation and Erosion of Polymer Networks
聚合物网络受控降解和侵蚀的中尺度建模
  • 批准号:
    2110309
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Thermal modeling of material deposition in melt extrusion 3D printing of fiber reinforced polymer composites
纤维增强聚合物复合材料熔融挤出 3D 打印中材料沉积的热建模
  • 批准号:
    576647-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Alliance Grants
Unraveling Mechanics of High Strength and Low Stiffness in Polymer Nanocomposites through Integrated Molecular Modeling and Nanomechanical Experiments
通过集成分子建模和纳米力学实验揭示聚合物纳米复合材料的高强度和低刚度力学
  • 批准号:
    2316200
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Towards computational design of catalyst layers for polymer electrolyte membrane fuel cells: linking multi-scale modeling and additive manufacturing
聚合物电解质膜燃料电池催化剂层的计算设计:连接多尺度建模和增材制造
  • 批准号:
    563665-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Alliance Grants
Mixed least-squares formulations within the framework of the theory of porous media for modeling ionic polymer-metal composites
多孔介质理论框架内的混合最小二乘公式用于模拟离子聚合物-金属复合材料
  • 批准号:
    445534800
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Research Grants
Modeling Polymer-Coated Nanopores in Nature and Nanotechnology
自然和纳米技术中聚合物涂层纳米孔的建模
  • 批准号:
    1954865
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Modeling of polymer lubricating additives by DNA structure and elucidation of the effect of molecular structure on frictional properties
通过 DNA 结构对聚合物润滑添加剂进行建模并阐明分子结构对摩擦性能的影响
  • 批准号:
    20K14640
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Modeling-based portrait and intelligent diagnostics of polymer electrolyte fuel cells
基于建模的聚合物电解质燃料电池画像与智能诊断
  • 批准号:
    513543-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了