Mixed least-squares formulations within the framework of the theory of porous media for modeling ionic polymer-metal composites
多孔介质理论框架内的混合最小二乘公式用于模拟离子聚合物-金属复合材料
基本信息
- 批准号:445534800
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2020
- 资助国家:德国
- 起止时间:2019-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of the proposed research project is the development of mixed Least-Squares finite element formulations for the analysis of the electromechanical behavior of ionic polymer-metal composites (IPMCs) within the framework of the theory of porous media (TPM). An incompressible four-phase model consisting of the phases polymer network, anions, cations and liquid is applied. The polymer network and the anions (fixed charges) have the same motion function, these two phases are combined to a solid phase. Furthermore, the same electrical potential is applied locally to all phases.A challenge in mixed Galerkin formulations is the robust approximations of the field quantities in space and time. Thus, the finite element ansatz spaces for the description of the coupled equations for the modeling of ionic polymer metal composites must satisfy certain stability conditions (LBB condition). Furthermore, simulations with real material parameters sometimes show large oscillations, e.g. in the fluid pressure.For these nonlinear, coupled boundary value problems the least squares method results in a minimization problem with symmetric positive semi-definite systems of equations. The ansatz spaces are not subjected to stability criteria, so that arbitrary conformal discretizations of the individual field quantities are possible and oscillation-free solution functions can be generated in principle.For ionic polymer metal composites, the temporal development of the concentration of the cations is described by a second order diffusion equation, which is transferred into a first order system within the LSFEM.The weighting of the residuals in the LSFEM is of particular importance with regard to the approximation quality and is systematically investigated. Furthermore, adaptive strategies in space and time are applied to achieve optimal convergence. We benefit from the fact that the LSFEM provides an a posteriori error estimator for mesh adaptivity as an inherent property of the method. The time adaptivity required for efficiency reasons is implemented by means of suitable Runge-Kutta methods.
拟议的研究项目的目标是开发混合最小二乘有限元公式,用于分析多孔介质理论(TPM)框架内离子聚合物-金属复合材料(IPMCs)的机电行为。采用不可压缩的四相模型,包括聚合物网络相、阴离子相、阳离子相和液相。聚合物网络和阴离子(固定电荷)具有相同的运动功能,这两相结合成固相。此外,相同的电势被局部地施加到所有相位。混合Galerkin公式的一个挑战是在空间和时间上的场量的鲁棒近似。因此,用于描述离子聚合物/金属复合材料的耦合方程的有限元分析空间必须满足一定的稳定性条件(LBB条件)。对于这些非线性、耦合的边值问题,最小二乘法的结果是一个对称半正定方程组的极小化问题。该方法不受稳定性准则的约束,因此可以对单个场量进行任意的共形离散,原则上可以生成无振荡的解函数。对于离子聚合物金属复合材料,阳离子浓度随时间的发展由二阶扩散方程描述,在LSFEM中,残差的加权对于逼近质量是特别重要的,并且被系统地研究。此外,在空间和时间的自适应策略,以实现最佳收敛。我们受益于这样一个事实,即LSFEM提供了一个后验误差估计网格自适应作为一个固有的属性的方法。效率原因所需的时间自适应性是通过合适的龙格-库塔方法来实现的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Joachim Bluhm其他文献
Professor Dr.-Ing. Joachim Bluhm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Joachim Bluhm', 18)}}的其他基金
Consideration of the charge balances of the ions regarding the behavior of ionic polymer-metal composites (IPMCs): A modeling concept within the framework of the Theory of Porous Media (TPM)
考虑离子聚合物-金属复合材料 (IPMC) 行为的离子电荷平衡:多孔介质理论 (TPM) 框架内的建模概念
- 批准号:
396390451 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Modeling of Ionic Electroactive Polymers - Consistent Formulation of the thermo-electro-chemo-mechanical coupling effects and Finite-Element Discretization
离子电活性聚合物建模 - 热-电化学-机械耦合效应和有限元离散化的一致公式
- 批准号:
257128106 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Priority Programmes
A model for self-healing anisotropic composites
自修复各向异性复合材料模型
- 批准号:
202570884 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Priority Programmes
Gefrier- und Auftauprozesse in gesättigten porösen Materialien
饱和多孔材料的冷冻和解冻过程
- 批准号:
43454482 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
SimulScan: Simultaneous functional and dynamic MRI for evaluating swallowing across age and in neurogenic dysphagia
SimulScan:同步功能和动态 MRI,用于评估跨年龄吞咽和神经源性吞咽困难
- 批准号:
10660667 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Metabolic age to define influences of the lipidome on brain aging in Alzheimer's disease
代谢年龄确定脂质组对阿尔茨海默氏病大脑衰老的影响
- 批准号:
10643738 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deep-Learning-Augmented Quantitative Gradient Recalled Echo (DLA-qGRE) MRI for in vivo Clinical Evaluation of Brain Microstructural Neurodegeneration in Alzheimer Disease
深度学习增强定量梯度回忆回波 (DLA-qGRE) MRI 用于阿尔茨海默病脑微结构神经变性的体内临床评估
- 批准号:
10659833 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multifactorial contribution of bone nanoscale composition to tissue quality in osteoporosis
骨纳米级成分对骨质疏松症组织质量的多因素贡献
- 批准号:
10575979 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multivariate Statistics and Machine Learning for Quality Control of Dried Ocimum Products
用于干罗勒产品质量控制的多元统计和机器学习
- 批准号:
10676412 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Adaptation of Dynamic Weighted Ordinary Least Squares Regression in the Presence of Interference Networks
存在干扰网络时动态加权普通最小二乘回归的自适应
- 批准号:
569021-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10330130 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Statistical methods for air-pollution studies using low-cost monitors
使用低成本监测仪进行空气污染研究的统计方法
- 批准号:
10342571 - 财政年份:2022
- 资助金额:
-- - 项目类别:
EGFR signaling network adaptations to overcome RAS-induced membrane stress in glioblastoma
EGFR信号网络适应克服胶质母细胞瘤中RAS诱导的膜应激
- 批准号:
10525284 - 财政年份:2022
- 资助金额:
-- - 项目类别: