CAREER: Investigate 3D Extracellular Potential Distribution at Single Cell Level
职业:研究单细胞水平的 3D 细胞外电位分布
基本信息
- 批准号:1454544
- 负责人:
- 金额:$ 50.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1454544HeCommon cells in the human body generate electrical voltage and as a result electrical current. Such signals represent biological activity and function such as growth and differentiation. Although scientists have measured such signals in a general way, this research project attempts to measure in different parts of a cell surface and such measurement is believed to enable us to better characterize cell behavior and function.Bioelectric signals are ubiquitous in biological systems and are very important for many biological activities. In applications, they can be used as physical biomarkers for diagnostic purposes or can be modulated for therapeutic purposes such as cancer cure or wound healing. Membrane potential, the voltage across the plasma membrane of cells, is a key bioelectrical signal for important cellular activities, such as proliferation, migration and differentiation. Recent studies have revealed that the membrane potential of cells has far more complicated spatial distributions even at single cell level. The role of these fine structures is still not clear and needs to be explored. One hypothesis is that these potential fine structures contain important information to guide essential cell activities and behaviors. This project will develop advanced scientific instruments using nanotechnology and study these fine potential structures at single molecule and single cell level. This research will help to decode the biological meaning of these fine structures and enable us to develop unprecedented diagnostic and therapeutic methods for public health.The research objective of this CAREER proposal is to investigate long-lasting extracellular potential microdomains of individual living cells with high spatial and temporal resolution using multifunctional scanning ionic conductance microscopy (SICM) techniques. The PI's long term goal is to understand bioelectricity at single cell and single molecule level using innovative nanopipette and SICM based integrated techniques that can achieve single molecule and single cell analysis and imaging under physiological conditions. Bioelectric signals are ubiquitous and play very important roles in biological systems. Steady extracellular potential microdomains around individual non-excitable cell have recently been revealed and they may carry instructive information in signaling pathways. To understand this newly discovered phenomenon, it is very important to quantitatively map the potential distributions around the periphery of one or a cluster of living cells with high spatial resolution in an extended time period. Conical-shaped glass or quartz nanopipettes have attracted increased attentions in recent years. They can be directly used as nanopores for single molecule biosensing. In addition, it can be used as sharp probes for an emerging scanning probe microscopy technique, SICM, to reveal the morphology of living cells with a high spatial resolution. To achieve the research objective, systematic approach will be used and three highly interrelated research tasks are planned: 1. Develop multifunctional SICM techniques for extracellular potential mapping. 2. Characterize the system using model samples in well-controlled environment. 3. Investigate extracellular extracellular potential microdomains of living cells with submicron resolution. These techniques are potentially transformative for bioelectricity studies at single cell level and can also be applied to a wide variety of areas, including biosensing, drug delivery and screening and cytotoxicity. The research outcomes will significantly impact the fundamental understanding of the complex bioelectric signaling networks and will result new types of biosensors and therapeutic methods for cancer, wound healing and developmental diseases.
人体内的普通细胞产生电压,从而产生电流。这些信号代表了生物活性和功能,如生长和分化。虽然科学家们已经用一般的方法测量了这些信号,但这个研究项目试图在细胞表面的不同部分进行测量,这种测量被认为能够使我们更好地表征细胞的行为和功能。生物电信号在生物系统中普遍存在,对许多生物活动非常重要。在应用中,它们可以被用作诊断目的的物理生物标记物,也可以被调节用于治疗目的,如癌症治愈或伤口愈合。膜电位,即细胞质膜上的电压,是细胞增殖、迁移和分化等重要活动的关键生物电信号。最近的研究表明,即使在单细胞水平上,细胞膜电位的空间分布也要复杂得多。这些精细结构的作用仍不清楚,需要探索。一种假设是,这些潜在的精细结构包含指导基本细胞活动和行为的重要信息。该项目将利用纳米技术开发先进的科学仪器,并在单分子和单细胞水平上研究这些精细的潜在结构。这项研究将有助于破译这些精细结构的生物学意义,并使我们能够开发出前所未有的公共卫生诊断和治疗方法。这项职业计划的研究目标是利用多功能扫描离子电导显微镜(SICM)技术,以高空间和时间分辨率研究单个活细胞的长期细胞外潜在微域。PI的长期目标是利用创新的纳米管和基于SICM的集成技术在单细胞和单分子水平上了解生物电,这些集成技术可以在生理条件下实现单分子和单细胞的分析和成像。生物电信号无处不在,在生物系统中扮演着非常重要的角色。最近发现了单个不可兴奋细胞周围稳定的细胞外电位微域,它们可能在信号通路中携带有指导意义的信息。为了理解这一新发现的现象,在延长的时间段内以高空间分辨率定量绘制一个或一群活细胞周围的势能分布是非常重要的。锥形玻璃或石英纳米柱近年来引起了越来越多的关注。它们可以直接用作单分子生物传感的纳米孔。此外,它还可以用作一种新的扫描探针显微镜技术的尖锐探针,以高空间分辨率揭示活细胞的形态。为了实现研究目标,将采用系统的方法,并计划开展三项高度相关的研究任务:1.开发多功能SICM技术用于细胞外电位标测。2.在可控环境下使用模型样本对系统进行表征。3.以亚微米分辨率研究活细胞的胞外电势微域。这些技术对单细胞水平的生物电学研究具有潜在的变革作用,也可以应用于广泛的领域,包括生物传感、药物输送和筛选以及细胞毒性。研究成果将对复杂的生物电信号网络的基本理解产生重大影响,并将产生新型生物传感器和癌症、伤口愈合和发育疾病的治疗方法。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Potentiometric and SERS Detection of Single Nanoparticle Collision Events on a Surface Functionalized Gold Nanoelectrode
表面功能化金纳米电极上单纳米粒子碰撞事件的电位和 SERS 检测
- DOI:10.1149/1945-7111/ac6245
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:Ghimire, Govinda;Pandey, Popular;Guo, Jing;Sarker, Golam Sabbir;Moon, Joong Ho;He, Jin
- 通讯作者:He, Jin
Direct Observation of Amide Bond Formation in a Plasmonic Nanocavity Triggered by Single Nanoparticle Collisions
- DOI:10.1021/jacs.1c02426
- 发表时间:2021-06-24
- 期刊:
- 影响因子:15
- 作者:Kong, Na;Guo, Jing;Yang, Wenrong
- 通讯作者:Yang, Wenrong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin He其他文献
Hepatocytic precursor (stem-like) WB-F344 cells reduce tumorigenicity of hepatoma CBRH-7919 cells via TGF-beta/Smad pathway.
肝细胞前体(干细胞样)WB-F344 细胞通过 TGF-β/Smad 途径降低肝癌 CBRH-7919 细胞的致瘤性。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Wei;Yi;Jia Guo;Yu;Xiao;Hui;Yi Xu;Hui;Jin He;Hong - 通讯作者:
Hong
Variation in Photodynamic Efficacy during the Cellular Uptake of Two Phthalocyanine Photosensitizers
两种酞菁光敏剂细胞摄取过程中光动力功效的变化
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:3.3
- 作者:
Jin He;M. Horng;J. T. Deahl;N. Oleinick;H. H. Evans - 通讯作者:
H. H. Evans
Polynunomial Effective Channel Mobility Based Above-Threshold Current Model for Undoped Polycrystalline-Silicon Thin-Film Transistors Consistent With Pao-Sah Model
基于多项式有效沟道迁移率的与 Pao-Sah 模型一致的未掺杂多晶硅薄膜晶体管阈值以上电流模型
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:3.1
- 作者:
Hongyu He;Xueren Zheng;Jin He;Mansun Chan - 通讯作者:
Mansun Chan
Micro-Strip Line 90 degrees Phase Shifter with Double Ground Slots for D-Band Applications
适用于 D 频段应用的具有双接地槽的微带线 90 度移相器
- DOI:
10.1142/s021812661850192x - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jiang Luo;Jin He;Pengwei Chen;Hao Wang;Sheng Chang;Qijun Huang;Xurui Mao;Yueping Zhang - 通讯作者:
Yueping Zhang
The distributed temperature abatement by the phase changing materials for battery in electric tools and its influence on aging
电动工具电池相变材料的分布式降温及其对老化的影响
- DOI:
10.1016/j.seta.2022.102199 - 发表时间:
2022 - 期刊:
- 影响因子:8
- 作者:
Ruifei Ma;Jin He;Xueliang Fan;Yaoqiu Qian;Yelin Deng - 通讯作者:
Yelin Deng
Jin He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin He', 18)}}的其他基金
Carbon Nanotube Based Nanofluidic Device for Biological Sensing
用于生物传感的碳纳米管纳米流体装置
- 批准号:
1334417 - 财政年份:2013
- 资助金额:
$ 50.02万 - 项目类别:
Standard Grant
相似海外基金
A human 3D bone-sensory nerve co-culture model to investigate bone-derived pain
用于研究骨源性疼痛的人体 3D 骨感觉神经共培养模型
- 批准号:
NC/Y000951/1 - 财政年份:2023
- 资助金额:
$ 50.02万 - 项目类别:
Research Grant
Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
- 批准号:
10725002 - 财政年份:2023
- 资助金额:
$ 50.02万 - 项目类别:
Developing new 3D-hydrogel models of the human mammary gland to investigate breast cancer initiation
开发新的人类乳腺 3D 水凝胶模型来研究乳腺癌的发生
- 批准号:
2862480 - 财政年份:2023
- 资助金额:
$ 50.02万 - 项目类别:
Studentship
Using 2D and 3D models to investigate the role of GABARAPL2 in pancreatic ductal adenocarcinoma treatment response
使用 2D 和 3D 模型研究 GABARAPL2 在胰腺导管腺癌治疗反应中的作用
- 批准号:
466854 - 财政年份:2021
- 资助金额:
$ 50.02万 - 项目类别:
Studentship Programs
A 3Rs approach to investigate the feto-maternal interface: visualisation of pathogen and antibody in a 3D in vitro human placental model.
研究胎儿-母体界面的 3R 方法:在 3D 体外人胎盘模型中可视化病原体和抗体。
- 批准号:
NC/V001566/1 - 财政年份:2021
- 资助金额:
$ 50.02万 - 项目类别:
Training Grant
Validation of an in vitro humanised 3D haematopoietic system to investigate haematological malignancies.
验证体外人源化 3D 造血系统以研究血液恶性肿瘤。
- 批准号:
NC/W00125X/1 - 财政年份:2021
- 资助金额:
$ 50.02万 - 项目类别:
Research Grant
A 3Rs approach to investigate the feto-maternal interface: visualisation of pathogen and antibody in a 3D in vitro human placental model
研究胎儿-母体界面的 3R 方法:3D 体外人胎盘模型中病原体和抗体的可视化
- 批准号:
2610396 - 财政年份:2021
- 资助金额:
$ 50.02万 - 项目类别:
Studentship
Novel imaging strategies to investigate 3D tumour invasion at the molecular level
在分子水平研究 3D 肿瘤侵袭的新颖成像策略
- 批准号:
MR/T04067X/1 - 财政年份:2020
- 资助金额:
$ 50.02万 - 项目类别:
Fellowship
Implementing a novel multimode 3D retinal imaging system to investigate metabolism and vascular disruptions in diabetic retinopathy
实施新型多模式 3D 视网膜成像系统来研究糖尿病视网膜病变的代谢和血管破坏
- 批准号:
10349947 - 财政年份:2020
- 资助金额:
$ 50.02万 - 项目类别:
Benchmarking of direct metal laser sintering (DMLS) 3D metal printed components to investigate geometric stability and materials integrity under thermal and mechanical fatigue
对直接金属激光烧结 (DMLS) 3D 金属打印组件进行基准测试,以研究热疲劳和机械疲劳下的几何稳定性和材料完整性
- 批准号:
553848-2020 - 财政年份:2020
- 资助金额:
$ 50.02万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's