Uncovering the Molecular Mechanisms that Underlie Photoperiodic Control of Plant Growth
揭示植物生长光周期控制的分子机制
基本信息
- 批准号:1456796
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the mechanisms underlying plant responses to changing environmental conditions is critical to improving agriculture. Plant growth is responsive to seasonal changes in day length, however, our understanding of factors that participate in this photoperiodic control of growth is incomplete. This proposal aims to investigate the function of a newly identified protein that is a key regulator of plant growth in response to photoperiod. The knowledge gained from this work will provide valuable insight into understanding the mechanisms that tie together light sensing, day length measurement, and growth under multiple conditions. This information will contribute to our ability to better anticipate plant responses to the environment. This proposal will also support the development and distribution of a low-cost, open-source plant-imaging platform based on Raspberry-Pi microcomputer systems to high schools as part of an effort to bring science into the local community. A benefit from this Broader Impacts activity is the potential for the public to develop innovative systems for continual, automated monitoring of plant growth. This work will transform our ability to understand plant responses to seasonal changes in the environment, contributing to the long-term goal of improving agriculture. The objective of this project is to understand the molecular mechanisms that couple light signaling with the circadian clock to regulate growth under changing photoperiodic conditions. This project will investigate the factors that modulate light signaling pathways in association with the circadian clock to regulate growth in response to the environment in a photoperiod-dependent manner. Using affinity purification and mass spectrometry to identify circadian clock-associated components, a new protein was identified that directly binds to both clock and light signaling factors, named MASS SPEC IDENTIFIED MODULATING GROWTH FACTOR 1 (MMF1). MMF1 is a conserved, plant-specific, nuclear-localized factor that regulates hypocotyl elongation in a day-length specific manner. This study aims to determine the mechanisms by which MMF1 modulates growth responses by combining physiology, genetics, biochemistry, mass spectrometry, and expression analysis to gain comprehensive understanding into the role of MMF1 in plants. Preliminary data, based on mass spectrometry results, direct interaction assays, genetics, hypocotyl elongation assays, and gene expression analysis, suggest a key role for MMF1 in modulating growth in a day-length dependent manner. The aims of this proposal are to 1) determine the role of MMF1 in the regulation of growth and physiology in a light- and photoperiod-dependent manner, 2) identify the genetic and biochemical bases underlying MMF1 modulation of light signaling pathways under specific environmental conditions, and 3) determine the role of MMF1 in regulating gene expression networks downstream of light signaling pathways. The knowledge gained from this work will provide valuable insight into understanding the mechanisms that couple light signaling, the circadian clock and growth under multiple conditions. This information will contribute to the ability to better anticipate plant responses to the environment and identify genetic targets to manipulate for increased agricultural productivity. The proposed research will provide scientific training and educational opportunities for students at the secondary school, undergraduate, graduate and post-graduate levels through the PI's participation in on-going science outreach and REU programs at the Danforth Plant Science Center and an appointment at Washington University in St. Louis. Also, an inexpensive time-lapse imaging system will be combined with educational materials for distribution to local high schools to cultivate an interest in plant responses to the environment. Through assembling, programming, and incorporating these low-cost, open-source plant-imaging systems into science projects within the classroom, local students will gain a unique opportunity to participate in STEM activities. Moreover, working with the public has the potential to develop innovative and distributive sensor systems for the non-invasive monitoring of plant growth. Together, the proposed research will have a significant impact on society through a better understanding of circadian clock function in diverse species and increased engagement with the public through participation in education and training programs.
了解植物对不断变化的环境条件的反应机制对于改善农业至关重要。植物的生长是对日长的季节性变化作出反应的,然而,我们对参与这种光周期生长控制的因素的理解是不完整的。这项建议旨在研究一种新发现的蛋白质的功能,该蛋白质是植物生长的关键调节因子,对光周期做出反应。从这项工作中获得的知识将为理解在多种条件下将光感知、日长测量和生长联系在一起的机制提供有价值的见解。这些信息将有助于我们更好地预测植物对环境的反应。这项提议还将支持开发一个基于Raspberry-PI微型计算机系统的低成本、开源植物成像平台,并将其分发给高中,作为将科学带入当地社区的努力的一部分。这种更广泛的影响活动的一个好处是,公众有可能开发创新的系统,对植物生长进行持续的、自动化的监测。这项工作将改变我们理解植物对环境季节性变化的反应的能力,为改善农业的长期目标做出贡献。这个项目的目的是了解光信号与生物钟耦合的分子机制,以调节在变化的光周期条件下的生长。这个项目将研究与生物钟相关的调节光信号通路的因素,以光周期依赖的方式调节生长对环境的反应。利用亲和纯化和质谱法鉴定出一种新的与生物钟和光信号因子直接结合的蛋白质,命名为MMF1(MMF1)。MMF1是一种保守的、植物特有的、核定位的因子,以一天特定的方式调节下胚轴的伸长。本研究旨在通过结合生理学、遗传学、生化、质谱学和表达分析来确定MMF1调控生长反应的机制,以全面了解MMF1在植物中的作用。基于质谱学结果、直接相互作用分析、遗传学、下胚轴伸长分析和基因表达分析的初步数据表明,MMF1在以一种日长依赖的方式调节生长方面发挥了关键作用。本研究的目的是1)确定MMF1在光和光周期依赖的生长和生理调控中的作用,2)确定在特定环境条件下MMF1调控光信号通路的遗传和生化基础,3)确定MMF1在光信号通路下游的基因表达网络中的调控作用。从这项工作中获得的知识将为理解光信号、生物钟和多种条件下生长的耦合机制提供有价值的见解。这些信息将有助于更好地预测植物对环境的反应,并确定可用于提高农业生产率的遗传目标。这项拟议的研究将通过PI参与丹福斯植物科学中心正在进行的科学推广和REU项目以及在圣路易斯的华盛顿大学的预约,为中学、本科生、研究生和研究生水平的学生提供科学培训和教育机会。此外,一个廉价的延时成像系统将与教育材料相结合,分发给当地的高中,以培养人们对植物对环境的反应的兴趣。通过组装、编程,并将这些低成本、开源的植物成像系统整合到课堂内的科学项目中,当地学生将获得参与STEM活动的独特机会。此外,与公众合作有可能开发用于非侵入性植物生长监测的创新和分布式传感器系统。总之,拟议的研究将通过更好地了解不同物种的生物钟功能,并通过参与教育和培训计划增加与公众的接触,从而对社会产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitri Nusinow其他文献
Dmitri Nusinow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
- 批准号:81300605
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Molecular Plant
- 批准号:31224801
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Plant
- 批准号:31024802
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
Cellular & Molecular Immunology
- 批准号:30824806
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Uncovering cargo and cell type specific molecular mechanisms of renal tubular epithelial transport
揭示肾小管上皮运输的货物和细胞类型特异性分子机制
- 批准号:
10705236 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Uncovering circuit and molecular mechanisms of restraint of motivated behavior
揭示抑制动机行为的回路和分子机制
- 批准号:
473552 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Fellowship Programs
Uncovering molecular mechanisms of metastatic rhabdomyosarcoma
揭示转移性横纹肌肉瘤的分子机制
- 批准号:
486072 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Studentship Programs
Uncovering the cellular and molecular mechanisms of folic acid fortification in neural tube defects
揭示叶酸强化治疗神经管缺陷的细胞和分子机制
- 批准号:
10595548 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Uncovering the Cellular and Molecular Mechanisms Driving B-cell Neogenesis During Regeneration
揭示再生过程中驱动 B 细胞新生的细胞和分子机制
- 批准号:
10315184 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
NSF Postdoctoral Fellowship in Biology FY 2021: Uncovering the Molecular Mechanisms of Mitochondrial Proteostasis
2021 财年 NSF 生物学博士后奖学金:揭示线粒体蛋白质稳态的分子机制
- 批准号:
2109312 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Fellowship Award
NSF Postdoctoral Fellowship in Biology FY 2021: Uncovering the molecular mechanisms that govern cnidarian-algal symbiosis using forward genetic screens
2021 财年 NSF 生物学博士后奖学金:利用正向遗传筛选揭示控制刺胞动物-藻类共生的分子机制
- 批准号:
2109503 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Fellowship Award
Uncovering the molecular mechanisms of potassium channel activity.
揭示钾通道活性的分子机制。
- 批准号:
DP210102405 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Discovery Projects
Uncovering the Cellular and Molecular Mechanisms Driving B-cell Neogenesis During Regeneration
揭示再生过程中驱动 B 细胞新生的细胞和分子机制
- 批准号:
10455473 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Uncovering Molecular Mechanisms Underlying Cell-to-Cell Movement and Long-Distance Trafficking of Viruses in Plants
揭示植物细胞间运动和病毒远距离贩运的分子机制
- 批准号:
RGPIN-2015-05117 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




