Collaborative Research: Molecular mechanisms and biogeochemical consequences of decomposer species interactions during succession in ecosystems
合作研究:生态系统演替过程中分解者物种相互作用的分子机制和生物地球化学后果
基本信息
- 批准号:1457695
- 负责人:
- 金额:$ 66.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over 100 gigatons of terrestrial plant matter are produced globally each year. Ninety percent of this biomass enters the pool of dead organic matter in soils. However, our understanding of how communities of decomposer microorganisms process this material is not yet clear enough to predict the rate of carbon and nutrient cycling through soils. This is a major gap in our knowledge of ecosystem stability, as the biochemical process of decomposition determines the balance between carbon storage on land and the amount of carbon dioxide released from the biosphere to the atmosphere. Decomposer microorganisms are a highly diverse group of organisms: hundreds of species of microbes can live on a piece of decomposing woody debris at any one time. The objective of this research is to identify the specific, biochemical ways in which these decomposer species interact during the decay of plant matter, and how these interactions shape the species composition and total activity of these important communities over time. The results of this research will provide detailed information on the biological processes that give rise to one of the largest natural fluxes of carbon dioxide to the atmosphere. The project will include training opportunities for a postdoctoral scholar, and graduate and undergraduate students. The PIs will disseminate a K-12 curriculum about the importance of decomposer microorganisms through summer programs for children.Microbes are the engines of ecosystem-level biogeochemical cycling, such that their frequent synergistic and antagonistic interactions likely determine rates of these processes. A widely observed pattern of microbial species interactions occurs during decay of dead organic matter (i.e. litter), where communities of decomposer fungi succeed one another over time and track changes in the abundance of litter chemicals. Across systems, the same orders, genera, and species of fungi often dominate the decomposer community present at each stage of decay, yet the mechanisms by which these individual species consistently become dominant, and how they influence the biogeochemistry of the system, are unknown. The objective of this research is to identify the molecular-level factors that regulate these processes. While classic theories of species interactions originally developed for macroorganisms may apply to decomposers, new information on microbial metabolic strategies, such as cross-feeding between species and anticipatory regulation of growth and metabolism, may also account for the structure and activity of these communities. Changes in litter and microbial chemistry during decay constitute one of the most predictable sequences of stimuli for microorganisms in nature, yet it is not known how microbes respond to these stimuli, or how these processes vary across a diversity of fungi. The proposed research will address these questions by leveraging state-of-the-art transcriptomics, metabolomics, and metabolic flux modeling with a model fungal-litter system to 1) determine the molecular stimuli that mediates interactions between competitively dominant and rare fungal species, 2) develop metabolic network models that predict the outcomes of species interactions, community dynamics, and metabolite cycling through litter, and 3) test whether molecular-level models can successfully recapitulate community and biogeochemistry dynamics previously observed in natural litter decay. The potential contribution of this work will be a complete gene-to-ecosystem-level analysis of decomposer fungal interactions, expanding and building linkages between the fields of analytical chemistry, molecular biology, microbiology, community ecology, and ecosystem ecology.
全球每年生产超过 100 亿吨陆地植物。百分之九十的生物量进入土壤中的死亡有机物池。然而,我们对分解微生物群落如何处理这种材料的理解还不够清楚,无法预测土壤中碳和养分循环的速率。这是我们对生态系统稳定性知识的一个主要差距,因为分解的生化过程决定了陆地上的碳储存与从生物圈释放到大气中的二氧化碳量之间的平衡。分解微生物是一组高度多样化的生物体:数百种微生物可以同时生活在一块分解的木质碎片上。这项研究的目的是确定这些分解者物种在植物物质腐烂过程中相互作用的具体生化方式,以及这些相互作用如何随着时间的推移影响这些重要群落的物种组成和总体活动。这项研究的结果将提供有关产生二氧化碳到大气的最大自然通量之一的生物过程的详细信息。该项目将包括为博士后学者、研究生和本科生提供培训机会。 PI 将通过儿童暑期项目传播有关分解微生物重要性的 K-12 课程。微生物是生态系统水平生物地球化学循环的引擎,因此它们频繁的协同和拮抗相互作用可能决定这些过程的速率。一种广泛观察到的微生物物种相互作用模式发生在死亡有机物(即垃圾)的腐烂过程中,其中分解真菌群落随着时间的推移而相互继承,并跟踪垃圾化学物质丰度的变化。在整个系统中,相同的真菌目、属和物种通常在每个腐烂阶段的分解者群落中占主导地位,但这些单个物种持续占据主导地位的机制以及它们如何影响系统的生物地球化学仍然未知。这项研究的目的是确定调节这些过程的分子水平因素。虽然最初为宏观生物体开发的物种相互作用的经典理论可能适用于分解者,但有关微生物代谢策略的新信息,例如物种之间的交叉喂养以及生长和代谢的预期调节,也可能解释这些群落的结构和活动。腐烂过程中凋落物和微生物化学的变化构成了自然界微生物最可预测的刺激序列之一,但尚不清楚微生物如何对这些刺激做出反应,也不知道这些过程在各种真菌中如何变化。拟议的研究将通过利用最先进的转录组学、代谢组学和代谢流模型以及真菌-凋落物系统模型来解决这些问题,以1)确定介导竞争优势和稀有真菌物种之间相互作用的分子刺激,2)开发代谢网络模型来预测物种相互作用、群落动态和代谢物在凋落物中循环的结果,以及3)测试是否 分子水平模型可以成功地重现以前在自然凋落物腐烂中观察到的群落和生物地球化学动力学。这项工作的潜在贡献将是对分解者真菌相互作用进行完整的基因到生态系统水平的分析,扩大和建立分析化学、分子生物学、微生物学、群落生态学和生态系统生态学领域之间的联系。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Designing Metabolic Division of Labor in Microbial Communities
- DOI:10.1128/msystems.00263-18
- 发表时间:2019-03-01
- 期刊:
- 影响因子:6.4
- 作者:Thommes, Meghan;Wang, Taiyao;Segre, Daniel
- 通讯作者:Segre, Daniel
Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems
- DOI:10.1038/s41467-018-07946-9
- 发表时间:2019-01-09
- 期刊:
- 影响因子:16.6
- 作者:Pacheco, Alan R.;Moel, Mauricio;Segre, Daniel
- 通讯作者:Segre, Daniel
Remnants of an Ancient Metabolism without Phosphate
- DOI:10.1016/j.cell.2017.02.001
- 发表时间:2017-03-09
- 期刊:
- 影响因子:64.5
- 作者:Goldford, Joshua E.;Hartman, Hyman;Segre, Daniel
- 通讯作者:Segre, Daniel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Bhatnagar其他文献
Jennifer Bhatnagar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 66.14万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321045 - 财政年份:2024
- 资助金额:
$ 66.14万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321044 - 财政年份:2024
- 资助金额:
$ 66.14万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
- 批准号:
2347912 - 财政年份:2024
- 资助金额:
$ 66.14万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
- 批准号:
2347913 - 财政年份:2024
- 资助金额:
$ 66.14万 - 项目类别:
Standard Grant
Collaborative Research: Catholyte Molecular Design For Non-aqueous Mg-organic Hybrid Redox Flow Batteries
合作研究:非水镁有机混合氧化还原液流电池的阴极电解液分子设计
- 批准号:
2419938 - 财政年份:2024
- 资助金额:
$ 66.14万 - 项目类别:
Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319096 - 财政年份:2024
- 资助金额:
$ 66.14万 - 项目类别:
Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319098 - 财政年份:2024
- 资助金额:
$ 66.14万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 66.14万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Uncovering eusocial pathways and consequences: Phylogenomics, morphological, and molecular evolution in Synalpheus snapping shrimps.
合作研究:RUI:揭示真社会途径和后果:鳄虾的系统基因组学、形态学和分子进化。
- 批准号:
2345470 - 财政年份:2023
- 资助金额:
$ 66.14万 - 项目类别:
Standard Grant