CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media

CMG 合作研究:自然介质中渐进前污染物传输的稳定模型

基本信息

  • 批准号:
    1460319
  • 负责人:
  • 金额:
    $ 12.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Contaminant transport through natural aquifers typically exhibits pre-asymptotic or transient anomalous behavior on the space and time scale critical to most environmental concerns. Complex and usually unpredictable medium heterogeneity at all relevant scales motivates the application of non-local transport theories. The proposed work will develop tempered stable models, which generalize standard non-local transport theories by adjusting fractal power-laws, to simulate pre-asymptotic transport and reveal the nature of real-world dispersion missed previously. There will be three major outcomes, including (1) a novel non-local transport theory and model based on tempered power laws that can efficiently simulate transient anomalous diffusion, (2) a quantitative linkage between the observable statistics of natural heterogeneous media and the model parameters built by a systematic Monte Carlo study, and (3) a convenient software suite with open source codes that solve and apply the model. This collaborative research will also test the model, the solver and the model predictability, by using historical tracer data and well-studied aquifer information. A careful consideration of the physical meaning of model components, and connections to statistical aquifer properties, will ensure that the resulting model is not limited to curve fitting applications.Accurate prediction of contaminant migration in real-world aquifers is critical to groundwater protection and cleanup. The proposed work will develop appropriate transport theory and build effective modeling components to address this problem. Hence this research is both highly theoretical and applied. In particular, the proposed work more accurately represents the underlying link between fractional calculus and power-law statistics in real aquifer material. The PI team includes mathematicians and hydrologists, forming interdisciplinary cooperation in cutting edge research.
污染物通过天然含水层的迁移在空间和时间尺度上表现出典型的前渐近或瞬态异常行为,这对大多数环境问题至关重要。复杂的和通常不可预测的介质异质性在所有相关的尺度激励非本地传输理论的应用。拟议的工作将开发回火稳定模型,通过调整分形幂律来推广标准的非局域传输理论,以模拟前渐近传输并揭示以前错过的真实世界色散的性质。将有三个主要成果,包括(1)一个新的非局部传输理论和模型的基础上回火幂律,可以有效地模拟瞬态异常扩散,(2)之间的定量联系的可观察的统计数据的天然非均匀介质和模型参数建立了一个系统的蒙特卡洛研究,和(3)一个方便的软件套件与开源代码,解决和应用模型。这项合作研究还将通过使用历史示踪剂数据和经过充分研究的含水层信息来测试模型、求解器和模型的可预测性。仔细考虑模型组成部分的物理意义,以及与统计含水层属性的联系,将确保所得到的模型不仅限于曲线拟合application.Accurate预测污染物迁移在现实世界的含水层是至关重要的地下水保护和清理。拟议的工作将开发适当的传输理论,并建立有效的建模组件来解决这个问题。因此,本研究具有很强的理论性和应用性。特别是,拟议的工作更准确地代表分数微积分和幂律统计之间的联系,在真实的含水层材料。PI团队包括数学家和水文学家,在前沿研究中形成跨学科合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yong Zhang其他文献

Cloning of 3′ end cDNA of ascorbate peroxidase gene from Fragaria × ananassa cv. Toyonaka.
草莓抗坏血酸过氧化物酶基因 3 端 cDNA 的克隆。
  • DOI:
    10.5539/jas.v2n2p58
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Hou;Haoru Tang;Yong Zhang;Qing Chen
  • 通讯作者:
    Qing Chen
Lattice Boltzmann modeling of two-phase electrohydrodynamic flows under unipolar charge injection
单极电荷注入下两相电流体动力流的格子玻尔兹曼建模
  • DOI:
    10.1103/physreve.105.065304
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Kang Luo;Yu Zhang;Jian Wu;Yong Zhang;He-Ping Tan
  • 通讯作者:
    He-Ping Tan
Selectively cross-linked poly (lactide)/ethylene-glycidyl methacrylate-vinyl acetate thermoplastic elastomers with partial dual-continuous network-like structures and shape memory performances
具有部分双连续网络结构和形状记忆性能的选择性交联聚丙交酯/乙烯-甲基丙烯酸缩水甘油酯-醋酸乙烯酯热塑性弹性体
  • DOI:
    10.1016/j.eurpolymj.2016.09.004
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Shiqiang Song;Yong Zhang;Weifu Dong;Mingqing Chen
  • 通讯作者:
    Mingqing Chen
A Novel Trypsin-like Serine Proteinase from the Venom of the Chinese Scorpion Buthus martensii Karsch
来自中国蝎毒的新型胰蛋白酶样丝氨酸蛋白酶
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Gao;Yong Zhang;P. Gopalakrishnakone
  • 通讯作者:
    P. Gopalakrishnakone
Comparison of three turbulence models for simulation of melt flow and heat transfer in the LEC crystal growth of GaAs
GaAs LEC 晶体生长中熔体流动和传热模拟的三种湍流模型的比较

Yong Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yong Zhang', 18)}}的其他基金

CAS:Mechanistic Investigation of Heme-based Catalysts for Sustainable Carbene Transfer Reactions
CAS:可持续卡宾转移反应的血红素基催化剂的机理研究
  • 批准号:
    2054897
  • 财政年份:
    2021
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
SusChEM: Selective C-H Functionalization by Highly Tunable Metalloporphyrin Carbenoid: A Mechanistic Investigation
SusChEM:高度可调金属卟啉类胡萝卜素选择性 C-H 官能化:机理研究
  • 批准号:
    1300912
  • 财政年份:
    2013
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Continuing Grant
CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
  • 批准号:
    1025417
  • 财政年份:
    2010
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
Collaborative Research: A Comparison of Local and Nonlocal Transport Theories
合作研究:本地和非本地运输理论的比较
  • 批准号:
    0748953
  • 财政年份:
    2007
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
  • 批准号:
    1025166
  • 财政年份:
    2010
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
  • 批准号:
    1025417
  • 财政年份:
    2010
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
CMG COLLABORATIVE RESEARCH: Quantum Monte Carlo Calculations of Deep Earth Materials
CMG 合作研究:地球深部材料的量子蒙特卡罗计算
  • 批准号:
    1024936
  • 财政年份:
    2010
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Non-assimilation Fusion of Data and Models
CMG协同研究:数据与模型的非同化融合
  • 批准号:
    1025453
  • 财政年份:
    2010
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Probabilistic Stratigraphic Alignment and Dating of Paleoclimate Data
CMG 合作研究:概率地层排列和古气候数据测年
  • 批准号:
    1025438
  • 财政年份:
    2010
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Continuing Grant
CMG COLLABORATIVE RESEARCH: Novel Mathematical Strategies for Superparameterization in Atmospheric and Oceanic Flows
CMG 合作研究:大气和海洋流超参数化的新数学策略
  • 批准号:
    1025468
  • 财政年份:
    2010
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Simulation of Wave-Current Interaction Using Novel, Coupled Non-Phase and Phase Resolving Wave and Current Models
CMG 合作研究:使用新型耦合非相位和相位解析波流模型模拟波流相互作用
  • 批准号:
    1025527
  • 财政年份:
    2010
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
  • 批准号:
    1025188
  • 财政年份:
    2010
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Standard Grant
CMG COLLABORATIVE RESEARCH: Nonlinear elastic-wave inverse scattering and tomography- from cracks to mantle convection
CMG 合作研究:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
  • 批准号:
    1025302
  • 财政年份:
    2010
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Continuing Grant
CMG Collaborative Research: Ocean Modeling by Bridging Primitive and Boussinesq Equations
CMG 合作研究:通过连接原始方程和 Boussinesq 方程进行海洋建模
  • 批准号:
    1025314
  • 财政年份:
    2010
  • 资助金额:
    $ 12.39万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了