CMG COLLABORATIVE RESEARCH: Novel Mathematical Strategies for Superparameterization in Atmospheric and Oceanic Flows
CMG 合作研究:大气和海洋流超参数化的新数学策略
基本信息
- 批准号:1025468
- 负责人:
- 金额:$ 97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Improving our understanding of, and ability to model atmospheric and oceanic circulation impacts human society in a very direct way. Atmospheric and oceanic flows, however, encompass a wide range of scales, from the planetary scale, of order 10000km, to the microscale, on the order of a few millimeters. This raises a particular challenge for global climate simulations, which cannot directly resolve scales below a few kilometers at best, even with the most powerful computers. The proposed project will develop novel methods to represent the effects of unresolved scales on directly simulated scales in atmospheric and oceanic models through ʻsuperparameterizationʼ (SP), defined broadly as a general set of techniques by which small-scale dynamics can be represented mathematically and numerically as an embedded sub-grid model. Superparameterization is a relatively new approach that has had great success in the parameterization of clouds, but has yet to be applied to many other relevant problems in climate models. The present project will apply novel SPtechniques to accurately incorporate the effects of a wide variety of important unresolved processes in atmospheric and oceanic models.Our research will focus on the application of SP strategies to highly relevant and difficult geophysical problems, including moist convection in the atmosphere, mesoscale and submesoscale eddies in the oceans, and moist geostrophic turbulence associated with the midlatitude weather system, which combines elements of both moist convection and geostrophic turbulence. We approach these diverse problems with a systematic, three step SP process: (1) the development of multi-scale equations for the physical problem;(2) the use of a periodic approximation for the fluctuations; and (3) exploitation of intermittency to replace fluctuating dynamics with reduced models that may be solved by either inexpensive numerical methods or by analytic solutions. Our goals are to develop and test this SP approach in a set of idealized models, and ultimately to provide new parameterization algorithms that may be incorporated in operational global climatemodels.
提高我们对大气和海洋环流的理解和建模能力,以非常直接的方式影响人类社会。然而,大气和海洋的流动包含了很大的尺度,从10000公里量级的行星尺度到几毫米量级的微尺度。这对全球气候模拟提出了一个特殊的挑战,即使使用最强大的计算机,也无法直接解决几公里以下的尺度。拟议的项目将开发新的方法,通过超级参数化(SP)来表示大气和海洋模型中直接模拟尺度上未解决尺度的影响,超级参数化(SP)被广泛定义为一套通用技术,通过这些技术,小尺度动态可以在数学上和数值上表示为嵌入式子网格模型。超级参数化是一种相对较新的方法,在云的参数化方面取得了巨大成功,但尚未应用于气候模式中的许多其他相关问题。本项目将应用新的SP技术,在大气和海洋模式中精确地纳入各种重要的未解决过程的影响,我们的研究将集中在SP策略在高度相关和困难的地球物理问题中的应用,包括大气中的湿对流,海洋中的中尺度和亚中尺度涡旋,以及与中纬度天气系统相关的湿地转湍流,它结合了湿对流和地转湍流的元素。我们接近这些不同的问题与一个系统的,三个步骤SP过程:(1)多尺度方程的物理问题的发展;(2)使用周期近似的波动;(3)开发的不稳定性,以取代波动动力学与减少模型,可以通过廉价的数值方法或解析解来解决。我们的目标是在一组理想化的模式中开发和测试这种SP方法,并最终提供新的参数化算法,可用于业务全球气候模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Majda其他文献
A systematic approach for correcting nonlinear instabilities
- DOI:
10.1007/bf01398510 - 发表时间:
1978-12-01 - 期刊:
- 影响因子:2.200
- 作者:
Andrew Majda;Stanley Osher - 通讯作者:
Stanley Osher
Andrew Majda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Majda', 18)}}的其他基金
Systematic Mathematical Strategies for Multi-Scale Stochastic Modeling and Uncertainty in Atmosphere/Ocean Science
大气/海洋科学中多尺度随机建模和不确定性的系统数学策略
- 批准号:
0456713 - 财政年份:2005
- 资助金额:
$ 97万 - 项目类别:
Continuing Grant
Collaborative Research: The Weak Temperature Gradient Equations for Tropical Atmosphere Dynamics
合作研究:热带大气动力学的弱温度梯度方程
- 批准号:
0139918 - 财政年份:2002
- 资助金额:
$ 97万 - 项目类别:
Standard Grant
CMG Research: Emerging Mathematical Strategies for Stochastic Modeling and Predictability to Climate Variability
CMG 研究:随机建模和气候变化可预测性的新兴数学策略
- 批准号:
0222133 - 财政年份:2002
- 资助金额:
$ 97万 - 项目类别:
Continuing Grant
Acquisition of a Clustered Workstation Computing Environment for Advancing Research and Education in the Atmospheric and Oceanic Sciences using General Circulation Models
获取集群工作站计算环境,以利用大气环流模型推进大气和海洋科学的研究和教育
- 批准号:
0079196 - 财政年份:2000
- 资助金额:
$ 97万 - 项目类别:
Standard Grant
Nonlinear Phenomena in Fluid Dynamics and Related PDE's with Applications to Atmosphere/Ocean Science
流体动力学中的非线性现象和相关偏微分方程及其在大气/海洋科学中的应用
- 批准号:
9972865 - 财政年份:1999
- 资助金额:
$ 97万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamics and Related P.D.E.'s with Applications to Atmosphere/Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程及其在大气/海洋科学中的应用
- 批准号:
9625795 - 财政年份:1996
- 资助金额:
$ 97万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamicsand Related P.D.E.'s with Applications to Atmosphere-Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程在大气-海洋科学中的应用
- 批准号:
9596102 - 财政年份:1995
- 资助金额:
$ 97万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamicsand Related P.D.E.'s with Applications to Atmosphere-Ocean Science
数学科学:流体动力学中的非线性现象和相关偏微分方程在大气-海洋科学中的应用
- 批准号:
9301094 - 财政年份:1993
- 资助金额:
$ 97万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Phenomena in Fluid Dynamicsand Related P.D.E.'s Theory, Asymptotics and Numerical Computation
数学科学:流体动力学中的非线性现象及相关的偏微分方程理论、渐近学和数值计算
- 批准号:
9001805 - 财政年份:1990
- 资助金额:
$ 97万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Partial Differential Equations ofFluid Dynamics and their Numerical Approximation
数学科学:流体动力学偏微分方程及其数值逼近
- 批准号:
8702864 - 财政年份:1987
- 资助金额:
$ 97万 - 项目类别:
Continuing Grant
相似海外基金
CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
- 批准号:
1460319 - 财政年份:2014
- 资助金额:
$ 97万 - 项目类别:
Standard Grant
Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
- 批准号:
1025166 - 财政年份:2010
- 资助金额:
$ 97万 - 项目类别:
Standard Grant
CMG Collaborative Research: Tempered Stable Models for Preasymptotic Pollutant Transport in Natural Media
CMG 合作研究:自然介质中渐进前污染物传输的稳定模型
- 批准号:
1025417 - 财政年份:2010
- 资助金额:
$ 97万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Quantum Monte Carlo Calculations of Deep Earth Materials
CMG 合作研究:地球深部材料的量子蒙特卡罗计算
- 批准号:
1024936 - 财政年份:2010
- 资助金额:
$ 97万 - 项目类别:
Standard Grant
CMG Collaborative Research: Non-assimilation Fusion of Data and Models
CMG协同研究:数据与模型的非同化融合
- 批准号:
1025453 - 财政年份:2010
- 资助金额:
$ 97万 - 项目类别:
Standard Grant
CMG Collaborative Research: Probabilistic Stratigraphic Alignment and Dating of Paleoclimate Data
CMG 合作研究:概率地层排列和古气候数据测年
- 批准号:
1025438 - 财政年份:2010
- 资助金额:
$ 97万 - 项目类别:
Continuing Grant
CMG Collaborative Research: Simulation of Wave-Current Interaction Using Novel, Coupled Non-Phase and Phase Resolving Wave and Current Models
CMG 合作研究:使用新型耦合非相位和相位解析波流模型模拟波流相互作用
- 批准号:
1025527 - 财政年份:2010
- 资助金额:
$ 97万 - 项目类别:
Standard Grant
Collaborative Research: CMG--Analysis and Modeling of Rotating Stratified Flows
合作研究:CMG--旋转层流分析与建模
- 批准号:
1025188 - 财政年份:2010
- 资助金额:
$ 97万 - 项目类别:
Standard Grant
CMG COLLABORATIVE RESEARCH: Nonlinear elastic-wave inverse scattering and tomography- from cracks to mantle convection
CMG 合作研究:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
- 批准号:
1025302 - 财政年份:2010
- 资助金额:
$ 97万 - 项目类别:
Continuing Grant
CMG Collaborative Research: Ocean Modeling by Bridging Primitive and Boussinesq Equations
CMG 合作研究:通过连接原始方程和 Boussinesq 方程进行海洋建模
- 批准号:
1025314 - 财政年份:2010
- 资助金额:
$ 97万 - 项目类别:
Continuing Grant