Bayesian Optimization for Exploratory Experimentation in the Behavioral Sciences

行为科学探索性实验的贝叶斯优化

基本信息

  • 批准号:
    1461535
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

This research project will develop an exploratory experimentation methodology for human behavioral research that will allow cognitive scientists to efficiently identify optimal conditions -- those leading to the most robust learning, the fastest performance, the fewest errors, the best decisions and choices. The tools to be developed will allow scientists to answer questions they cannot currently address due to the massive data collection effort required. To understand and predict human behavior, scientists typically perform controlled experiments that compare a small, carefully chosen set of experimental conditions. For example, in designing instructional software, a comparison might be made between two techniques for teaching students. The finding that one technique obtains reliably better outcomes has both practical and theoretical implications. However, this result does not answer the question one often wishes to ask: what is the very best possible technique? The methodology to be developed will allow scientists to evaluate many experimental conditions with only a few participants, in contrast to the traditional controlled experiment which evaluates only a few conditions each with many participants. A key product of the project will be black-box software that researchers in various disciplines of the cognitive sciences can use to apply exploratory experimentation to problems in their own field. Experimental studies also will be conducted to demonstrate the breadth of the approach in domains including: concept acquisition, color aesthetics, formal instruction, and the design of usable and engaging software.The project will extend Bayesian optimization methods to human experimental research. Bayesian optimization has long been used in the geostatistics community for inferring unobserved properties (e.g., oil reserves below the earth's surface) from costly measurements (e.g., drilling tests). In the current project, the "landscapes" being explored are defined over possible conditions (e.g., training strategies), the unobserved properties are internal cognitive states of the human observer, and the measurements are obtained via behavioral evaluations (e.g., assessments of learning). To apply Bayesian optimization methods to a range of human experimental research, mathematical models will be developed for multiple behavioral response measures, including choice, ranking, rating, latency, and free recall. The exploratory nature of the approach requires heuristics for sequentially selecting experimental conditions to obtain maximally informative data given prior observations. Various heuristics will be evaluated in the context of behavioral research.
这项研究项目将开发一种用于人类行为研究的探索性实验方法,使认知科学家能够有效地识别最佳条件--那些导致最健壮的学习、最快的表现、最少的错误、最好的决定和选择的条件。即将开发的工具将允许科学家回答他们目前由于需要大量数据收集工作而无法解决的问题。为了理解和预测人类行为,科学家通常会进行对照实验,比较一组精心选择的小实验条件。例如,在设计教学软件时,可以对两种教学技术进行比较。发现一种技术可以可靠地获得更好的结果,这一发现具有实际和理论意义。然而,这一结果并没有回答人们经常想要问的问题:什么是最好的可能技术?即将开发的方法将允许科学家只需几个参与者就能评估许多实验条件,而传统的对照实验只评估几个条件,每个实验有多个参与者。该项目的一个关键产品是黑盒软件,认知科学各学科的研究人员可以使用该软件对自己领域的问题进行探索性实验。该项目还将进行实验研究,以展示该方法在概念获取、色彩美学、形式教学以及可用和吸引人的软件设计等领域的广度。该项目将把贝叶斯优化方法扩展到人体实验研究。贝叶斯优化长期以来一直被用于地质统计学领域,用于从昂贵的测量(例如钻井测试)中推断未观察到的属性(例如,地球表面下的石油储量)。在目前的项目中,正在探索的“景观”是在可能的条件下定义的(例如,训练策略),未观察到的属性是人类观察者的内部认知状态,测量是通过行为评估(例如,学习评估)获得的。为了将贝叶斯优化方法应用于一系列人类实验研究,将开发多种行为反应措施的数学模型,包括选择、排名、评级、延迟和自由回忆。该方法的探索性要求启发式方法顺序地选择实验条件,以获得给定先前观察的最大信息量的数据。各种启发式方法将在行为研究的背景下进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Mozer其他文献

SERIAL ORDER: A PARALLEL DISTRmUTED PROCESSING APPROACH
串行顺序:并行分散处理方法
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael I Jordan;Eileen Conway;Kathy Farrelly;Jonathan Grodin;Bernhard Keller;Michael Mozer;David Navon;Stanley Parkinson
  • 通讯作者:
    Stanley Parkinson

Michael Mozer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Mozer', 18)}}的其他基金

NCS-FO: Collaborative Research: Operationalizing Students' Textbooks Annotations to Improve Comprehension and Long-Term Retention
NCS-FO:协作研究:运用学生的教科书注释以提高理解力和长期保留
  • 批准号:
    1631428
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Control and Adaptation of Attentional Processing: Empirical and Computational Investigations
合作研究:注意力处理的控制和适应:实证和计算研究
  • 批准号:
    0339103
  • 财政年份:
    2004
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
KDI: Discrete Representations in Working Memory: Developmental, Neuropsychological, and Computational Investigations
KDI:工作记忆中的离散表示:发展、神经心理学和计算研究
  • 批准号:
    9873492
  • 财政年份:
    1998
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CISE 1994 Minority Graduate Fellowship Honorable Mention
CISE 1994 少数族裔研究生奖学金荣誉奖
  • 批准号:
    9422202
  • 财政年份:
    1994
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Connectionist Models Summer School
联结主义模型暑期学校
  • 批准号:
    9223711
  • 财政年份:
    1993
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Presidential Young Investigator Award
总统青年研究员奖
  • 批准号:
    9058450
  • 财政年份:
    1990
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
  • 批准号:
    2338559
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
  • 批准号:
    2349338
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
  • 批准号:
    AH/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了