KDI: Discrete Representations in Working Memory: Developmental, Neuropsychological, and Computational Investigations

KDI:工作记忆中的离散表示:发展、神经心理学和计算研究

基本信息

  • 批准号:
    9873492
  • 负责人:
  • 金额:
    $ 80万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-10-01 至 2002-09-30
  • 项目状态:
    已结题

项目摘要

This project aims to futher our understanding of the neural representations that underlie working memory. Working memory refers to the active maintenance of information in the service of complex cognitive tasks such as problem solving and planning. The team of investigator with study how the unique demands placed on the working memory system shape its representations during learning and development, and how these representations affect the use of working memory by the cognitive system as a whole. Their primary source of insight into this process will come from a computational analysis, which will be used to integrate and explore relevant findings from neurobiology and developmental and adult cognition. The primary hypothesis is that to maintain information in an active state over delays and in the face of interference, working memory representations should be discrete. A discrete representation admits to only a finite set of possible states, rather than representing continuous states. For example, the integers from 1 to 100 form a discrete set, in contrast to the real numbers in this range. Discreteness imparts a measure of robustness to the representation because small amounts of "noise" can be overcome by interpreting an observed state as the nearest discrete stat. From the central property of discreteness, a number of other properties follow. For example, discrete representations should be more categorical, more easily verbalize, better for perceiving or performing a sequence of steps, and more accessible to awareness. All these properties have component of the proposed research is to explore the idea that they all follow from the more basic property of dicreteness. The initial goal of the project will be establish through experimental studies the validity of the hypothesis that working memory representations are indeed discrete. This will be done by exploring a key behavioral consequence of this hypothesis: working memory representations should be more categorical than other representations. This predicition will be investigated with a set of existing empirical paradigms that have elucidated variables that affect the working memory system, including developmental age, delay, dual-task demands, and brain damage. Working memory plays a central role in most accounts of complex human behavior, because working memory is required in any task that involves multiple stos ir a temporally extended focus of attention. This kinds of tasks are important and pervasive throughout society, including: economic, political, and military planning; air-traffic control; and scientific research, to name just a few. It is essential to understand the nature of the representations in the working memory system and to understand how people learn to use working memory in the service of complex behavior. This research will advance our knowledge in this important area, and may provide insight into techniques for rehabilitation of working memory following brain injury and techniques for assisting the development of working memory in children.
该项目旨在进一步理解工作记忆背后的神经表征。工作记忆是指为复杂的认知任务(例如问题解决和计划)服务的信息的主动维护。 研究人员团队研究工作记忆系统的独特需求如何在学习和发展过程中形成其表征,以及这些表征如何影响整个认知系统对工作记忆的使用。 他们对这一过程的主要洞察来源将来自计算分析,该分析将用于整合和探索神经生物学以及发育和成人认知的相关发现。 主要假设是,为了在延迟和面对干扰时保持信息处于活动状态,工作记忆表示应该是离散的。 离散表示仅允许有限的一组可能状态,而不是表示连续状态。 例如,从 1 到 100 的整数形成一个离散集合,与此范围内的实数相反。 离散性为表示提供了鲁棒性的度量,因为可以通过将观察到的状态解释为最接近的离散统计来克服少量的“噪声”。 从离散性的核心属性出发,可以得出许多其他属性。 例如,离散表示应该更加明确,更容易用语言表达,更好地感知或执行一系列步骤,并且更容易被意识所接受。 所有这些属性都有所提出的研究的组成部分,即探索它们都遵循更基本的离散性属性的想法。 该项目的最初目标将通过实验研究确定工作记忆表征确实是离散的假设的有效性。 这将通过探索该假设的一个关键行为结果来完成:工作记忆表征应该比其他表征更加明确。 这一预测将通过一组现有的经验范式进行研究,这些范式阐明了影响工作记忆系统的变量,包括发育年龄、延迟、双重任务要求和脑损伤。 工作记忆在大多数复杂人类行为的解释中起着核心作用,因为任何涉及多个任务或暂时扩展注意力的任务都需要工作记忆。 此类任务在整个社会中都很重要且普遍存在,包括:经济、政治和军事规划;空中交通管制;和科学研究等等。 了解工作记忆系统中表征的本质以及了解人们如何学习使用工作记忆来服务于复杂行为至关重要。 这项研究将增进我们在这一重要领域的知识,并可能为脑损伤后工作记忆的康复技术和协助儿童工作记忆发展的技术提供见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Mozer其他文献

SERIAL ORDER: A PARALLEL DISTRmUTED PROCESSING APPROACH
串行顺序:并行分散处理方法
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael I Jordan;Eileen Conway;Kathy Farrelly;Jonathan Grodin;Bernhard Keller;Michael Mozer;David Navon;Stanley Parkinson
  • 通讯作者:
    Stanley Parkinson

Michael Mozer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Mozer', 18)}}的其他基金

NCS-FO: Collaborative Research: Operationalizing Students' Textbooks Annotations to Improve Comprehension and Long-Term Retention
NCS-FO:协作研究:运用学生的教科书注释以提高理解力和长期保留
  • 批准号:
    1631428
  • 财政年份:
    2016
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Bayesian Optimization for Exploratory Experimentation in the Behavioral Sciences
行为科学探索性实验的贝叶斯优化
  • 批准号:
    1461535
  • 财政年份:
    2015
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
Collaborative Research: Control and Adaptation of Attentional Processing: Empirical and Computational Investigations
合作研究:注意力处理的控制和适应:实证和计算研究
  • 批准号:
    0339103
  • 财政年份:
    2004
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant
CISE 1994 Minority Graduate Fellowship Honorable Mention
CISE 1994 少数族裔研究生奖学金荣誉奖
  • 批准号:
    9422202
  • 财政年份:
    1994
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Connectionist Models Summer School
联结主义模型暑期学校
  • 批准号:
    9223711
  • 财政年份:
    1993
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Presidential Young Investigator Award
总统青年研究员奖
  • 批准号:
    9058450
  • 财政年份:
    1990
  • 资助金额:
    $ 80万
  • 项目类别:
    Continuing Grant

相似海外基金

Discrete differential geometry, Lie sphere geometry, discrete surfaces theory, surface representations
离散微分几何、李球几何、离散曲面理论、曲面表示
  • 批准号:
    22KF0255
  • 财政年份:
    2023
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Geometric quantum representations of discrete groups and their extension to higher category
离散群的几何量子表示及其向更高类别的扩展
  • 批准号:
    21H00986
  • 财政年份:
    2021
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optimization based on discrete structure representations
基于离散结构表示的优化
  • 批准号:
    19H04174
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deformation of hyperbolic structures and geometry of non-discrete representations
双曲结构的变形和非离散表示的几何
  • 批准号:
    19K14530
  • 财政年份:
    2019
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Using Mixed Discrete-Continuum Representations to Characterize the Dynamics of Large Many-Body Dynamics Problems
使用混合离散连续体表示来表征大型多体动力学问题的动力学
  • 批准号:
    1635004
  • 财政年份:
    2016
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Discrete representations in the character variety of a surface group
表面群特征变化的离散表示
  • 批准号:
    26800038
  • 财政年份:
    2014
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Affine algebra representations and discrete integrability
仿射代数表示和离散可积性
  • 批准号:
    1100929
  • 财政年份:
    2011
  • 资助金额:
    $ 80万
  • 项目类别:
    Standard Grant
Understanding of the relation between degenerate hypergeometric functions and the matrix coefficients of the discrete series representations of semi simple Lie groups
理解简并超几何函数与半单李群离散级数表示的矩阵系数之间的关系
  • 批准号:
    23540005
  • 财政年份:
    2011
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric representations and symmetries of graphs, maps and other discrete structures and applications in science
图形、地图和其他离散结构的几何表示和对称性及其在科学中的应用
  • 批准号:
    195353141
  • 财政年份:
    2011
  • 资助金额:
    $ 80万
  • 项目类别:
    Research Grants
Indiscrete representations of discrete groups
离散群的不离散表示
  • 批准号:
    21654011
  • 财政年份:
    2009
  • 资助金额:
    $ 80万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了