Conference on Mathematical Sciences Challenges in Quantum Information

量子信息数学科学挑战会议

基本信息

  • 批准号:
    1461679
  • 负责人:
  • 金额:
    $ 3.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-12-01 至 2016-11-30
  • 项目状态:
    已结题

项目摘要

This award supports participation in a conference on mathematical sciences challenges in quantum information science, held 12-13 February 2015 in Arlington, Virginia. The field of quantum information (QI) explores the theoretical, experimental, and technological areas covering the use and implications of quantum mechanics for communication and computation purposes. While conceptually all of the diverse aspects that QI encompasses arise from the seemingly simple appreciation of information as a physical resource, its consequences have the potential to revolutionize computation, communication, and ideas about complexity. In particular, QI promises exponentially more efficient quantum algorithms for solving hard combinatorial problems and for simulating the behavior of complex quantum systems, along with unprecedented opportunities for secure communication and new perspectives to tackle a range of problems in physics, biology, applied mathematics, engineering, and computer sciences. As a result, QI is currently a thriving and naturally interdisciplinary research area, and one of critical strategic relevance to 21st century's science and technology. As the QI field is entering a new stage of maturity, further progress is increasingly relying on the use of diverse advanced mathematical techniques. In turn, new areas of mathematics are being identified, which offer the potential for major future advances in the field. This award supports a one-and-a-half-day conference that brings together leading researchers working across a broad spectrum of problems in QI theory, with the goals of (i) highlighting the centrality and importance of mathematical tools; and (ii) assessing outstanding mathematical challenges and formulating a vision for the future. A distinguished group of speakers will highlight the latest research developments and open problems in topics, including quantum channels and quantum error correction theory, quantum marginals, random quantum states and dynamics, many-body quantum systems, and quantum control. Panel discussions and breakout sessions are intended to identify new promising directions for investigations. The expected broad impacts of the proposed conference are twofold. On the one hand, the conference facilitates collaborative exploration between academic and federal agency scientists of the short- to mid-term mathematical challenges in advancing the field of QI -- with a written report being anticipated as an output of the conference. On the other hand, the conference serves as a vehicle to enlist mathematically-oriented scientists to bring their ideas to bear on accessible fundamental problems in QI, and to educate the next generation of scientists working in this very important field.
该奖项支持参加 2015 年 2 月 12 日至 13 日在弗吉尼亚州阿灵顿举行的量子信息科学数学科学挑战会议。 量子信息(QI)领域探索理论、实验和技术领域,涵盖量子力学在通信和计算方面的使用和影响。 虽然从概念上讲,QI 所包含的所有不同方面都源于对信息作为物理资源的看似简单的理解,但其后果有可能彻底改变计算、通信和关于复杂性的想法。特别是,QI 有望为解决困难组合问题和模拟复杂量子系统的行为提供指数级更高效的量子算法,并为安全通信提供前所未有的机会,并为解决物理、生物学、应用数学、工程和计算机科学领域的一系列问题提供新视角。因此,QI 目前是一个蓬勃发展的自然跨学科研究领域,也是与 21 世纪科学技术具有重要战略意义的领域之一。随着 QI 领域进入一个新的成熟阶段,进一步的进步越来越依赖于各种先进数学技术的使用。反过来,新的数学领域正在被确定,这为该领域未来的重大进展提供了潜力。该奖项支持举办为期一天半的会议,汇集了研究 QI 理论中广泛问题的领先研究人员,其目标是 (i) 强调数学工具的中心性和重要性; (ii) 评估突出的数学挑战并制定未来愿景。一群杰出的演讲者将重点介绍量子通道和量子纠错理论、量子边际、随机量子态和动力学、多体量子系统和量子控制等主题的最新研究进展和未决问题。小组讨论和分组会议旨在确定新的有希望的调查方向。拟议会议的预期广泛影响是双重的。一方面,该会议促进了学术界和联邦机构科学家之间对推进 QI 领域的短期到中期数学挑战的合作探索,预计会议的成果将是一份书面报告。另一方面,这次会议也是一个媒介,可以招募以数学为导向的科学家,将他们的想法应用于量子力学中可理解的基本问题,并教育在这个非常重要领域工作的下一代科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lorenza Viola其他文献

The Size of Exponential Sums on Intervals of the Real Line
  • DOI:
    10.1007/s00365-011-9135-x
  • 发表时间:
    2011-07-15
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Tamás Erdélyi;Kaveh Khodjasteh;Lorenza Viola
  • 通讯作者:
    Lorenza Viola
Quantum resources for purification and cooling: fundamental limits and opportunities
用于纯化和冷却的量子资源:基本限制和机遇
  • DOI:
    10.1038/srep05192
  • 发表时间:
    2014-06-05
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Francesco Ticozzi;Lorenza Viola
  • 通讯作者:
    Lorenza Viola

Lorenza Viola的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lorenza Viola', 18)}}的其他基金

Quantum Metrology in Complex Noise Environments
复杂噪声环境中的量子计量
  • 批准号:
    2013974
  • 财政年份:
    2020
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
Weaving Stability from Dissipation: Fixed-Point Engineering for Quantum Information Processing
耗散的编织稳定性:量子信息处理的定点工程
  • 批准号:
    1620541
  • 财政年份:
    2016
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
Explorations in Quantum Pseudorandomness
量子伪随机性的探索
  • 批准号:
    1104403
  • 财政年份:
    2011
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
High-Fidelity Quantum Information Processing via Dynamical Quantum Error Control
通过动态量子误差控制进行高保真量子信息处理
  • 批准号:
    0903727
  • 财政年份:
    2009
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
Randomized Dynamical Decoupling Techniques for Quantum Information Processing
量子信息处理的随机动态解耦技术
  • 批准号:
    0555417
  • 财政年份:
    2006
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317570
  • 财政年份:
    2024
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317572
  • 财政年份:
    2024
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317569
  • 财政年份:
    2024
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317571
  • 财政年份:
    2024
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
Richmond Area Mathematical Sciences Conference at Virginia Commonwealth University
弗吉尼亚联邦大学里士满地区数学科学会议
  • 批准号:
    2000033
  • 财政年份:
    2019
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Applications of Polynomial Systems - June 4-8, 2018
NSF/CBMS 数学科学区域会议 - 多项式系统的应用 - 2018 年 6 月 4-8 日
  • 批准号:
    1741730
  • 财政年份:
    2018
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
Conference on Equity for Discipline-Based Education Researchers in the Mathematical and Physical Sciences
数理科学学科教育研究人员公平会议
  • 批准号:
    1845540
  • 财政年份:
    2018
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
Conference in Harmonic Analysis at the International Centre for Mathematical Sciences (ICMS)
国际数学科学中心 (ICMS) 调和分析会议
  • 批准号:
    1700938
  • 财政年份:
    2017
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
Enhancing the Mathematical Sciences Component of the 2017 SACNAS National Conference
加强 2017 年 SACNAS 全国会议的数学科学部分
  • 批准号:
    1743331
  • 财政年份:
    2017
  • 资助金额:
    $ 3.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了