Randomized Dynamical Decoupling Techniques for Quantum Information Processing
量子信息处理的随机动态解耦技术
基本信息
- 批准号:0555417
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum mechanics provides novel paradigms for processing information by harnessing phenomena that have no classical analog. Physical realizations of quantum information promise, in particular, great improvements in our abilities to solve hard computational problems and simulate complex systems. However, quantum information is incredibly more vulnerable than its classical counterpart to the effects of both environmental noise and operational errors. Although powerful approaches based on fault-tolerant quantum error correction have been developed to cope with the challenge of counteracting quantum noise, practical exploitation of these results remains severely constrained due to the large overheads and design complexity involved.Dynamical decoupling techniques have recently emerged as an increasingly attractivestrategy for coherent dynamical control and error suppression in quantum information pro-cessing. Broadly inspired by spin-echo phenomena and coherent averaging techniques innuclear magnetic resonance spectroscopy, decoupling methods offer the compelling advan-tage of avoiding auxiliary memory resources and measurement capabilities, while remainingapplicable to a large class of physically relevant devices and error processes.The central theme of the proposed research is to further push the theoretical and practical significance of dynamical decoupling methods, by investigating a novel randomized setting which overcomes important limitations of existing deterministic schemes. The focus will be on both (i) exploring randomized decoupling schemes within a device-independent control-theoretic framework, by identifying in particular optimal ways for merging advantageous features of purely deterministic and random protocols and by obtaining analytical error bounds on expected performance; (ii) benchmarking the actual performance of randomized control schemes in qubit devices of direct relevance to proposed quantum information processing technologies, with emphasis on solid-state spin-based qubit implementations.
量子力学通过利用没有经典类比的现象,为处理信息提供了新的范例。特别是量子信息的物理实现有望极大地提高我们解决困难计算问题和模拟复杂系统的能力。然而,量子信息比经典信息更容易受到环境噪声和操作错误的影响。虽然基于容错量子纠错的强有力的方法已经被开发出来以科普抵消量子噪声的挑战,但是由于涉及的大开销和设计复杂性,这些结果的实际利用仍然受到严重限制。动态解耦技术最近成为量子信息处理中相干动态控制和错误抑制的越来越有吸引力的策略。受核磁共振波谱学中自旋回波现象和相干平均技术的启发,动态解耦方法具有避免辅助存储资源和测量能力,同时适用于大量物理相关器件和误差过程的优点,其研究的中心是进一步推动动态解耦方法的理论和实践意义。通过研究一种新的随机设置,克服了现有的确定性计划的重要限制。重点将放在两个(i)探索随机解耦计划内的设备无关的控制理论框架,通过确定特别是最佳的方式合并的优势特点,纯确定性和随机协议,并通过获得分析误差界预期的性能;(二)对与拟议的量子信息处理直接相关的量子比特设备中随机化控制方案的实际性能进行基准测试技术,重点是基于固态自旋的量子比特实现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lorenza Viola其他文献
The Size of Exponential Sums on Intervals of the Real Line
- DOI:
10.1007/s00365-011-9135-x - 发表时间:
2011-07-15 - 期刊:
- 影响因子:1.200
- 作者:
Tamás Erdélyi;Kaveh Khodjasteh;Lorenza Viola - 通讯作者:
Lorenza Viola
Quantum resources for purification and cooling: fundamental limits and opportunities
用于纯化和冷却的量子资源:基本限制和机遇
- DOI:
10.1038/srep05192 - 发表时间:
2014-06-05 - 期刊:
- 影响因子:3.900
- 作者:
Francesco Ticozzi;Lorenza Viola - 通讯作者:
Lorenza Viola
Lorenza Viola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lorenza Viola', 18)}}的其他基金
Quantum Metrology in Complex Noise Environments
复杂噪声环境中的量子计量
- 批准号:
2013974 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Weaving Stability from Dissipation: Fixed-Point Engineering for Quantum Information Processing
耗散的编织稳定性:量子信息处理的定点工程
- 批准号:
1620541 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Conference on Mathematical Sciences Challenges in Quantum Information
量子信息数学科学挑战会议
- 批准号:
1461679 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Explorations in Quantum Pseudorandomness
量子伪随机性的探索
- 批准号:
1104403 - 财政年份:2011
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
High-Fidelity Quantum Information Processing via Dynamical Quantum Error Control
通过动态量子误差控制进行高保真量子信息处理
- 批准号:
0903727 - 财政年份:2009
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似海外基金
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Research Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
- 批准号:
2349508 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Investigating Multi-Scale Dynamical Processes Amplifying Storm Surges
研究放大风暴潮的多尺度动力学过程
- 批准号:
2342516 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
- 批准号:
2342407 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
- 批准号:
2337506 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
- 批准号:
2337942 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant