EAGER-DynamicData: Reducing Orbital Position Uncertainty with Ensembles of Upper Atmospheric Models
EAGER-DynamicData:利用高层大气模型集合降低轨道位置不确定性
基本信息
- 批准号:1462363
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The United States has many tens of billions of dollars of assets in low-Earth orbit, including the International Space Station. In addition, more than 15,000 pieces of debris are orbiting the Earth, and all of these objects are potential projectiles that could easily destroy valuable assets. Further, if any of this debris collides, more debris will result, possibly causing a cascade of collisions, termed the Kessler Syndrome. The present goal of the United States, therefore, is to track as many objects in low-Earth orbit as possible and, when a collision is predicted, move the operational satellites to avoid collision. The problem is fuel is needed to move operational satellites, and those satellites cannot be refueled. Therefore, it is essential to have as accurate as possible predictions of the tracks of all of the objects in orbit. In reality, these tracks are uncertain, just as the future path of a hurricane is uncertain. In order to more accurately predict the tracks of all of these objects, it is important to take into account the atmospheric density and account for how that density changes as a function of energy inputs, such as when the northern lights intensify. This research will explore how to use models to predict energy inputs into the upper atmosphere in order to better predict the tracks of orbiting objects.The main technical goals of this proposal are to: (1) use probability distribution functions to determine the drivers of the thermosphere and ionosphere; (2) use a new technique to remove bias in different models of the upper atmosphere; (3) drive an ensemble of models of the upper atmosphere using those predictions; (4) use model predictions along with a catalog of current satellite locations to determine the orbital tracks of objects in low-Earth orbit; and (5) train a graduate student to conduct scientific investigations and use models of the upper atmosphere. The predictions will be made using a statistical analysis of historical data. The bias removal will be done using Retrospective Cost Adaptive Input and State Estimation, which allows missing physics within models to be accounted for by comparing the model output to data sources and adjusting the model. Various statistical and physics-based models of the upper atmosphere will be driven with ensembles of drivers to create ensembles of model output, allowing the uncertainty in the thermospheric density to be accounted for in orbital-track prediction. The graduate student will run the ensemble of models and track various satellites provided by the Air Force catalog. The student will write papers and attend conferences in order to provide updates on the research.
美国在低地球轨道上拥有数百亿美元的资产,包括国际空间站。此外,有超过15,000块碎片绕地球运行,所有这些物体都是潜在的抛射体,很容易摧毁宝贵的资产。此外,如果这些碎片中的任何一个发生碰撞,就会产生更多的碎片,可能造成一连串的碰撞,称为凯斯勒综合症。因此,美国目前的目标是跟踪尽可能多的低地球轨道物体,并在预测发生碰撞时移动运行中的卫星以避免碰撞。 问题是需要燃料来移动运行中的卫星,而这些卫星无法加油。 因此,必须尽可能准确地预测轨道上所有物体的轨道。 事实上,这些路径是不确定的,就像飓风未来的路径是不确定的一样。 为了更准确地预测所有这些物体的轨迹,必须考虑到大气密度,并考虑到这种密度如何随着能量输入而变化,例如当北方灯光增强时。 这项研究将探讨如何利用模型预测进入高层大气的能量输入,以便更好地预测轨道物体的轨道,这项建议的主要技术目标是:(1)利用概率分布函数确定热层和电离层的驱动因素;(2)利用一种新的技术消除高层大气不同模型中的偏差;(3)利用一种新的技术消除高层大气中的偏差。(3)利用这些预测推动一套高层大气模型;(4)利用模型预测沿着卫星当前位置目录确定低地球轨道物体的轨道轨迹;(5)培训研究生进行科学调查和使用高层大气模型。 预测将使用历史数据的统计分析。 将使用回溯成本自适应输入和状态估计来消除偏差,这允许通过将模型输出与数据源进行比较并调整模型来解释模型中缺失的物理特性。 各种基于统计和物理学的高层大气模型将由驱动程序集合驱动,以创建模型输出集合,从而能够在轨道轨道预测中考虑到热层密度的不确定性。研究生将运行模型的集合,并跟踪空军目录提供的各种卫星。 学生将撰写论文并参加会议,以提供有关研究的最新信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Ridley其他文献
Correction to: Meso-Scale Electrodynamic Coupling of the Earth Magnetosphere-Ionosphere System
- DOI:
10.1007/s11214-022-00947-7 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Yiqun Yu;Jinbin Cao;Zuyin Pu;Vania K. Jordanova;Aaron Ridley - 通讯作者:
Aaron Ridley
Music, value, and the passions
音乐、价值和激情
- DOI:
10.2307/900321 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Aaron Ridley - 通讯作者:
Aaron Ridley
Joule Heating rate at high-latitudes by Swarm and ground-based observations compared to MHD simulations
与 MHD 模拟相比,Swarm 和地面观测在高纬度地区的焦耳加热率
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.9
- 作者:
Kirsti Kauristie;O. Marghitu;Max Van De Kamp;Theresa Hoppe;Ilja Honkonen;A. Blagau;Ionuț Mădălin Ivan;Mihail Codrescu;Aaron Ridley;Gabor Toth;Yasunobu Ogawa;Lorenzo Trenchi - 通讯作者:
Lorenzo Trenchi
Nietzsche: The Anti-Christ, Ecce Homo, Twilight of the Idols: And Other Writings
尼采:《反基督》、《Ecce Homo》、《偶像的黄昏:以及其他著作》
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Aaron Ridley;J. Norman - 通讯作者:
J. Norman
Aaron Ridley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Ridley', 18)}}的其他基金
Collaborative Research: CEDAR: Causal Relationships of Ion-neutral Coupling Processes at Mid-latitudes
合作研究:CEDAR:中纬度地区离子中性耦合过程的因果关系
- 批准号:
1452097 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Collaborative Research: CubeSat: A U.S. CubeSat Constellation for the QB50 Mission (QBUS)
合作研究:CubeSat:用于 QB50 任务 (QBUS) 的美国 CubeSat 星座
- 批准号:
1242839 - 财政年份:2014
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Collaborative Research: PFISR Ion-Neutral Observations in the Thermosphere (PINOT)
合作研究:PFISR 热层离子中性观测 (PINOT)
- 批准号:
1242787 - 财政年份:2012
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Workshop to Explore the Utility of Cubesat Projects for Scientific Research and Technology Advances, and STEM Education and Workforce Development; Arlington, Virginia; May 24, 2012
探索立方体卫星项目在科学研究和技术进步、STEM 教育和劳动力发展方面的效用研讨会;
- 批准号:
1242286 - 财政年份:2012
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: CEDAR--Development and Application of a Multi-site Observing Network to Study Mid-latitude Thermospheric Dynamics
合作研究:CEDAR——研究中纬度热层动力学的多站点观测网络的开发和应用
- 批准号:
1138938 - 财政年份:2012
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
CubeSat: Cubesat investigating Atmospheric Density Response to Extreme driving (CADRE)
CubeSat:Cubesat 研究大气密度对极限驾驶的响应 (CADRE)
- 批准号:
1042815 - 财政年份:2011
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Collaborative Research: Ionospheric Contribution to Geomagnetic Storms
合作研究:电离层对地磁风暴的贡献
- 批准号:
1010812 - 财政年份:2011
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Asymmetric Thermospheric Response to Polar Driving
合作研究:了解极地驾驶的不对称热层响应
- 批准号:
0838828 - 财政年份:2009
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Polar Experimantal Network for Geospace Upper-atmosphere Investigations (PENGUIn): Interhemispheric Investigations along the 40 Degree Magnetic Meridian
地球空间高层大气调查极地实验网络 (PENGUIn):沿 40 度磁子午线进行半球间调查
- 批准号:
0838861 - 财政年份:2009
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: CEDAR--Experimental and Modeling Study of Mesoscale Ion-Neutral Coupling in the Auroral Thermosphere
合作研究:CEDAR——极光热层中尺度离子中性耦合的实验和模拟研究
- 批准号:
0640429 - 财政年份:2007
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
相似海外基金
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
- 批准号:
1833553 - 财政年份:2018
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER-DynamicData: Generative Statistical Modeling for Dynamic and Distributed Data
EAGER-DynamicData:动态和分布式数据的生成统计建模
- 批准号:
1462230 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
- 批准号:
1462254 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER-DynamicData: A Scalable Framework for Data-Driven Real-Time Event Detection in Power Systems
EAGER-DynamicData:电力系统中数据驱动的实时事件检测的可扩展框架
- 批准号:
1462311 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
- 批准号:
1462393 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER- DynamicData: Novel Approaches for Optimization, Control, and Learning in Distributed Networks
EAGER-DynamicData:分布式网络中优化、控制和学习的新方法
- 批准号:
1462397 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative: Exploiting the Dynamically Architectural Configurability for Compressed Sensing
EAGER-DynamicData:协作:利用压缩感知的动态架构可配置性
- 批准号:
1462473 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
- 批准号:
1462241 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
- 批准号:
1462404 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
- 批准号:
1462191 - 财政年份:2015
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant