EAGER- DynamicData: Novel Approaches for Optimization, Control, and Learning in Distributed Networks

EAGER-DynamicData:分布式网络中优化、控制和学习的新方法

基本信息

  • 批准号:
    1462397
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Recent advances in sensor and robotics technology have led to large networks of coordinated mobile platforms that can perform automatic sensing, mapping, learning, and control tasks. While the remote tasks can be controlled by the ground center via long-range communication links, the links are expensive and suffer long delays. This project develops computational methods that will significant improve the ability for the remote agents to coordinate locally with one another for tasks such as recognize and navigate around obstacles, reconstruct signals, and learn new control policies from a large amount of multi-modal sensor data, all done with little or no communication to a center. The proposed approach is radically different from the current state of the art. It also includes educational components such as courses, seminars, and initiatives for under-represented minority and women.The proposed work is a set of novel algorithms for a variety of computing problems in multi-agent networks, for problems involving extremely large-scale distributed datasets and high complexity objectives, and with greater accuracy at rates that are provably faster than existing methods. Very promising preliminary results have been obtained. The proposed project includes (a) a new approach to integrate multi-agent coordination with problems arising in optimization, game theory, control, and learning, into systems of equations, inclusions, or variational inequalities; (b) novel operator splitting methods that lead to decentralized numerical solutions of these systems, which scale to new levels of size, complexity, and diversity; (c) stochastic approximation techniques to deal with the imminent "distributed data deluge", along with accelerations techniques based on variance reduction, importance sampling, and asynchronous parallelization; and (d) a set of open-source software products for optimization, control, and learning problems with dynamic and large-scale data, along with a comprehensive evaluation plan. The contributions of the project is a unified framework in parts (a) and (b) above, which enable the decentralized numerical solutions at new levels of speed, complexity, diversity, and resilience. In order to achieve the goals, substantial resources will be devoted to both mathematical research and engineering challenges.
传感器和机器人技术的最新进展已经导致了协调的移动的平台的大型网络,其可以执行自动感测、映射、学习和控制任务。虽然远程任务可以通过远程通信链路由地面中心控制,但这些链路价格昂贵,而且延迟时间长。 该项目开发的计算方法将显着提高远程代理在本地相互协调的能力,以完成诸如识别和绕过障碍物,重建信号以及从大量多模态传感器数据中学习新的控制策略等任务,所有这些都是在很少或根本没有与中心通信的情况下完成的。所提出的方法是从根本上不同于目前的艺术状态。它还包括教育组件,如课程,研讨会,并为代表性不足的少数民族和妇女的倡议。所提出的工作是一套新颖的算法,在多智能体网络中的各种计算问题,涉及极大规模的分布式数据集和高复杂性的目标,并且以比现有方法更快的速度具有更高的准确性。已经取得了非常有希望的初步结果。拟议的项目包括:(a)一种新的方法,将多智能体协调与优化、博弈论、控制和学习中出现的问题整合到方程、包含或变分不等式系统中;(B)新颖的算子分裂方法,导致这些系统的分散数值解,这些系统的规模、复杂性和多样性达到新的水平;(c)处理即将到来的“分布式数据泛滥”的随机近似技术,沿着基于方差减少、重要性抽样和异步并行化的加速技术;以及(d)一套开放源代码软件产品,用于优化、控制和学习具有动态和大规模数据的问题,以及沿着综合评估计划。该项目的贡献是在上述部分(a)和(B)中建立了一个统一的框架,使分散的数值解决方案能够达到新的速度,复杂性,多样性和弹性水平。为了实现这些目标,大量资源将用于数学研究和工程挑战。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Convergence of Asynchronous Parallel Iteration with Unbounded Delays
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wotao Yin其他文献

ExtraPush for consensus optimization with convex differentiable objective functions over a directed network
ExtraPush 通过有向网络上的凸可微目标函数实现共识优化
Learning Collaborative Sparsity Structure via Nonconvex Optimization for Feature Recognition
通过非凸优化学习协作稀疏结构进行特征识别
One condition for solution uniqueness and robustness of both l1-synthesis and l1-analysis minimizations
l1 综合和 l1 分析最小化的解决方案唯一性和鲁棒性的一个条件
Expressive Power of Graph Neural Networks for (Mixed-Integer) Quadratic Programs
(混合整数)二次规划的图神经网络的表达能力
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziang Chen;Xiaohan Chen;Jialin Liu;Xinshang Wang;Wotao Yin
  • 通讯作者:
    Wotao Yin
Decentralized jointly sparse signal recovery by reweighted lq minimization
通过重新加权 lq 最小化分散式联合稀疏信号恢复

Wotao Yin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wotao Yin', 18)}}的其他基金

Operator Splitting Methods: Certificates and Second-Order Acceleration
算子拆分方法:证书和二阶加速
  • 批准号:
    1720237
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Computation of Large-Scale, Multi-Dimensional Sparse Optimization Problems
大规模、多维稀疏优化问题的计算
  • 批准号:
    1317602
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Optimizations for Sparse Solutions and Applications
职业:稀疏解决方案和应用程序的优化
  • 批准号:
    1349855
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Optimizations for Sparse Solutions and Applications
职业:稀疏解决方案和应用程序的优化
  • 批准号:
    0748839
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似海外基金

EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
  • 批准号:
    1833553
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Generative Statistical Modeling for Dynamic and Distributed Data
EAGER-DynamicData:动态和分布式数据的生成统计建模
  • 批准号:
    1462230
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
  • 批准号:
    1462254
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: A Scalable Framework for Data-Driven Real-Time Event Detection in Power Systems
EAGER-DynamicData:电力系统中数据驱动的实时事件检测的可扩展框架
  • 批准号:
    1462311
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Reducing Orbital Position Uncertainty with Ensembles of Upper Atmospheric Models
EAGER-DynamicData:利用高层大气模型集合降低轨道位置不确定性
  • 批准号:
    1462363
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
  • 批准号:
    1462393
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Collaborative: Exploiting the Dynamically Architectural Configurability for Compressed Sensing
EAGER-DynamicData:协作:利用压缩感知的动态架构可配置性
  • 批准号:
    1462473
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
  • 批准号:
    1462241
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
  • 批准号:
    1462404
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
  • 批准号:
    1462191
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了