FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
基本信息
- 批准号:1462401
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project focuses on several problems connected with the long-term dynamics of solutions of partial differential evolution equations. Equations of this type are central to the modeling and simulation of a wide range of phenomena, including water waves, propagation of light, behavior of plasmas, and gravitation. The investigators are senior researchers with experience in different aspects of the study of partial differential equations; their complementary expertise will be brought to bear on four main research directions in the study of solutions of dispersive and hyperbolic equations. The four aspects of nonlinear partial differential equations are all manifestations of the general goal of understanding the long time dynamics of solutions to important nonlinear dispersive and hyperbolic equations. This project is a collective effort of a group of five senior researchers from four institutions with research experience in various areas of partial differential equations. The investigators have been interested in both dispersive and hyperbolic partial differential equations and will collaborate to approach the problems under study from several different directions. The project centers on four main research directions in the study of solutions of dispersive and hyperbolic equations: (1) the analysis of critical semilinear evolutions, with special emphasis on the "soliton resolution conjecture" for extended type II solutions, (2) construction of global solutions of certain quasilinear dispersive models, such as water wave models, plasma models, and crystal optics, (3) stability problems in General Relativity, motivated by the outstanding Kerr nonlinear stability conjecture, and (4) long-term dynamics of solutions corresponding to randomized data. These four aspects of nonlinear partial differential equations are all manifestations of the general goal of understanding the long time dynamics of solutions. While specific major problems are identified for the project, this is a very active field, and it is anticipated that this project will identify and study other important problems during the course of the investigation. The project will also enhance links and collaborations among researchers at leading mathematical centers in the U.S., promoting training through active research involvement of students and postdoctoral researchers. Research resulting from this project will be disseminated widely in advanced graduate courses, survey articles, and monographs.
本课题主要研究与偏微分方程解的长期动力学有关的几个问题。这种类型的方程是建模和模拟一系列现象的中心,包括水波、光的传播、等离子体的行为和引力。研究人员是在偏微分方程研究的不同方面都有经验的资深研究人员;他们将在色散方程和双曲型方程的解的研究中的四个主要研究方向上发挥互补的专业知识。非线性偏微分方程解的四个方面都是理解重要的非线性、色散和双曲型方程解的长时间动力学这一总目标的表现。这个项目是由来自四个机构的五名高级研究人员共同努力的,他们在偏微分方程的各个领域都有研究经验。研究人员对色散和双曲型偏微分方程都很感兴趣,并将从几个不同的方向合作研究正在研究的问题。该项目主要集中在色散和双曲型方程解的研究中的四个主要研究方向:(1)临界半线性演化的分析,特别是扩展的II型解的“孤子解猜想”;(2)某些拟线性色散模型的整体解的构造,如水波模型、等离子体模型和晶体光学;(3)广义相对论中的稳定性问题,受突出的Kerr非线性稳定性猜想的启发;(4)与随机化数据相对应的解的长期动力学。非线性偏微分方程的这四个方面都是理解解的长期动力学的总体目标的表现。虽然确定了该项目的具体主要问题,但这是一个非常活跃的领域,预计该项目将在调查过程中确定和研究其他重要问题。该项目还将加强美国领先数学中心的研究人员之间的联系和合作,通过学生和博士后研究人员的积极参与来促进培训。该项目所产生的研究将在高级研究生课程、调查文章和专著中广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gigliola Staffilani其他文献
Errata to “Low Regularity Solutions for the Kadomtsev–Petviashvili I Equation”, GAFA, Geom. Funct. Anal. 13 (2003), 737-794
- DOI:
10.1007/s00039-007-0614-y - 发表时间:
2007-07-20 - 期刊:
- 影响因子:2.500
- 作者:
James Colliander;Carlos E. Kenig;Gigliola Staffilani - 通讯作者:
Gigliola Staffilani
Well-posedness and regularity properties of 2d $$\beta $$ -plane stochastic Navier–Stokes equations in a periodic channel
- DOI:
10.1007/s40574-024-00451-6 - 发表时间:
2024-12-10 - 期刊:
- 影响因子:0.700
- 作者:
Yuri Cacchió;Amirali Hannani;Gigliola Staffilani - 通讯作者:
Gigliola Staffilani
On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions
- DOI:
10.1007/s00220-012-1621-x - 发表时间:
2012-11-17 - 期刊:
- 影响因子:2.600
- 作者:
Kay Kirkpatrick;Enno Lenzmann;Gigliola Staffilani - 通讯作者:
Gigliola Staffilani
Gigliola Staffilani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gigliola Staffilani', 18)}}的其他基金
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems
FRG:协作研究:量子系统推导和动力学的新挑战
- 批准号:
2052651 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
- 批准号:
1764403 - 财政年份:2018
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Collaborative Research: Directed Reading Program Network
合作研究:定向阅读计划网络
- 批准号:
1740143 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Dispersive partial differential equations: between a deterministic and a probabilistic approach
色散偏微分方程:确定性方法和概率方法之间
- 批准号:
1362509 - 财政年份:2014
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
New perspectives on dispersive equations
关于色散方程的新观点
- 批准号:
1068815 - 财政年份:2011
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Pseudo-relativistic nonlinear Schroedinger equations
伪相对论非线性薛定谔方程
- 批准号:
0702492 - 财政年份:2007
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Conference Proposal -- MIT Women in Mathematics: A Celebration
会议提案——麻省理工学院女性数学家:一场庆典
- 批准号:
0749377 - 财政年份:2007
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Advances in the theory of dispersive equations
色散方程理论的进展
- 批准号:
0602678 - 财政年份:2006
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Fourier Analysis and Dispersive Equations
傅里叶分析和色散方程
- 批准号:
0330731 - 财政年份:2003
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似国自然基金
微尺度光-酶协同催化流动反应过程及其强化机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
高温蠕变与疲劳协同作用下多裂纹扩展寿命算法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于复合相变界面材料及微通道结构调控协同散热研究
- 批准号:JCZRLH202500111
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于等离子体协同催化的氨燃料重整技术研究
- 批准号:JCZRLH202500823
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
抑制GLRX2协同雄激素疗法治疗去势抵抗性前列腺癌的机制研究
- 批准号:JCZRLH202500112
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
酵母可溶性多糖协同益生菌增效机制的研究
- 批准号:JCZRLH202500927
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
磁场诱导二维材料光催化析氢与热电输运性能协同增强研究
- 批准号:JCZRLH202501259
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
北斗星地协同地质灾害智慧防控和应急技术研究
- 批准号:JCZRLH202500581
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向具身智能的灵巧手多指协同主动触觉感知机制研究
- 批准号:JCZRQN202500196
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
镁碳耐火材料中Fe2AlB2-Al2O3复合粉体物相重构协同强韧化及材料抗渣侵蚀机理研究
- 批准号:JCZRQN202500380
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant