Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
基本信息
- 批准号:1764403
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We interact with waves all the time and everywhere. When we listen to music, when we use our cell phones, when we warm up a dinner in a microwave, when we look at the stars in the sky and when we relax on a sunny beach. But wave phenomena may also affect the lives of millions of people when earthquakes shake and propagate, tsunamis form or nuclear radiations get out of control. Indeed, waves naturally arise occur in a variety of physical systems such as nonlinear optics, atmosphere and ocean waves, quantum mechanics and plasmas. The study of waves is fundamental for the understanding of phenomena at both a very small scale, such as the Bose-Einstein Condensate, and at a very large one, such as collusion of galaxies. These expressions of nature are never too smooth and rarely too simple: interactions of small waves can produce very large outcomes, such as freak waves, while complicated objects such as solitons almost do not see each other when they cross. Phenomena such as these are the byproduct of nonlinear wave interactions, and understanding what are the possible outcomes, given the initial state of a system of waves, is fundamental to predict and to control it, hopefully to our advantage. In this NSF supported research the PIs present a series of projects at the cutting edge of research in nonlinear wave phenomena in which deterministic approaches, classically based on harmonic and Fourier analysis, are implemented alongside probabilistic ones to capture basic properties of wave phenomena. It has become clear in recent years that deterministic methods and probabilistic ones naturally feed off each other and when combined not only contribute to our understanding but also open the door to new paradigms to move research forward in various directions. More precisely, the PIs propose four projects at the forefront of nonlinear evolution equations, where the interplay of deterministic and probabilistic approaches is the key to make progress. The problems range from the study of weak turbulence for dispersive and fluid equations to the analysis of integrable structures, from the definition of Gibbs type measures to the probabilistic existence and stability of certain geometric flows enjoying null form nonlinearities. The probabilistic component of PIs' work in the last few years has contributed in bridging the dispersive and wave nonlinear equations community with that specialized in stochastic partial differential equations. This interaction has created ongoing collaborations between members of these two communities. The work that the PIs, their students and collaborators will generate in solving the problems described in this project will further solidify the interactions between these two vibrant communities. The broader impact component of the project aims at fostering the training of doctoral graduate students and junior researchers in the US, thus fundamentally contributing to the STEM workforce. It will also enhance dissemination and collaborative research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们每时每刻都在与波相互作用。当我们听音乐时,当我们使用手机时,当我们用微波炉加热晚餐时,当我们看天上的星星时,当我们在阳光明媚的海滩上放松时。但是,当地震震动和传播、海啸形成或核辐射失控时,波浪现象也可能影响数百万人的生活。事实上,波浪自然产生于各种物理系统中,如非线性光学、大气和海浪、量子力学和等离子体。波的研究是理解小尺度现象(如玻色-爱因斯坦凝聚)和大尺度现象(如星系的合谋)的基础。这些自然的表达从来都不太流畅,也很少太简单:小波的相互作用可以产生非常大的结果,比如反常波,而像孤子这样的复杂物体在交叉时几乎看不到对方。像这样的现象是非线性波相互作用的副产品,在给定波系统的初始状态下,理解可能的结果是预测和控制它的基础,希望对我们有利。在这项NSF支持的研究中,pi提出了一系列处于非线性波现象研究前沿的项目,其中经典的基于谐波和傅立叶分析的确定性方法与概率方法一起实现,以捕获波现象的基本特性。近年来,确定性方法和概率方法自然地相互促进,当它们结合在一起时,不仅有助于我们的理解,而且还打开了向各个方向推进研究的新范式的大门。更准确地说,pi在非线性演化方程的前沿提出了四个项目,其中确定性和概率方法的相互作用是取得进展的关键。这些问题的范围从色散和流体方程的弱湍流研究到可积结构的分析,从吉布斯测度的定义到某些零形式非线性几何流的概率存在性和稳定性。在过去的几年中,pi的工作中的概率成分在连接色散和波动非线性方程社区与专门研究随机偏微分方程的社区方面做出了贡献。这种互动在这两个社区的成员之间创造了持续的合作。pi、他们的学生和合作者在解决本项目中描述的问题时所做的工作将进一步巩固这两个充满活力的社区之间的互动。该项目的更广泛影响部分旨在促进美国博士研究生和初级研究人员的培训,从而从根本上为STEM劳动力做出贡献。它还将加强传播和合作研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the nonlinear Dysthe equation
- DOI:10.1016/j.na.2021.112292
- 发表时间:2021-02-23
- 期刊:
- 影响因子:1.4
- 作者:Grande,Ricardo;Kurianski,Kristin M.;Staffilani,Gigliola
- 通讯作者:Staffilani,Gigliola
A rigorous derivation of the Hamiltonian structure for the nonlinear Schrödinger equation
非线性薛定谔方程哈密顿结构的严格推导
- DOI:10.1016/j.aim.2020.107054
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Mendelson, Dana;Nahmod, Andrea R.;Pavlović, Nataša;Rosenzweig, Matthew;Staffilani, Gigliola
- 通讯作者:Staffilani, Gigliola
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gigliola Staffilani其他文献
Errata to “Low Regularity Solutions for the Kadomtsev–Petviashvili I Equation”, GAFA, Geom. Funct. Anal. 13 (2003), 737-794
- DOI:
10.1007/s00039-007-0614-y - 发表时间:
2007-07-20 - 期刊:
- 影响因子:2.500
- 作者:
James Colliander;Carlos E. Kenig;Gigliola Staffilani - 通讯作者:
Gigliola Staffilani
Well-posedness and regularity properties of 2d $$\beta $$ -plane stochastic Navier–Stokes equations in a periodic channel
- DOI:
10.1007/s40574-024-00451-6 - 发表时间:
2024-12-10 - 期刊:
- 影响因子:0.700
- 作者:
Yuri Cacchió;Amirali Hannani;Gigliola Staffilani - 通讯作者:
Gigliola Staffilani
On the Continuum Limit for Discrete NLS with Long-Range Lattice Interactions
- DOI:
10.1007/s00220-012-1621-x - 发表时间:
2012-11-17 - 期刊:
- 影响因子:2.600
- 作者:
Kay Kirkpatrick;Enno Lenzmann;Gigliola Staffilani - 通讯作者:
Gigliola Staffilani
Gigliola Staffilani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gigliola Staffilani', 18)}}的其他基金
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems
FRG:协作研究:量子系统推导和动力学的新挑战
- 批准号:
2052651 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Directed Reading Program Network
合作研究:定向阅读计划网络
- 批准号:
1740143 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
- 批准号:
1462401 - 财政年份:2015
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Dispersive partial differential equations: between a deterministic and a probabilistic approach
色散偏微分方程:确定性方法和概率方法之间
- 批准号:
1362509 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
New perspectives on dispersive equations
关于色散方程的新观点
- 批准号:
1068815 - 财政年份:2011
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Pseudo-relativistic nonlinear Schroedinger equations
伪相对论非线性薛定谔方程
- 批准号:
0702492 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Conference Proposal -- MIT Women in Mathematics: A Celebration
会议提案——麻省理工学院女性数学家:一场庆典
- 批准号:
0749377 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Advances in the theory of dispersive equations
色散方程理论的进展
- 批准号:
0602678 - 财政年份:2006
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Fourier Analysis and Dispersive Equations
傅里叶分析和色散方程
- 批准号:
0330731 - 财政年份:2003
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似国自然基金
数据驱动的航行体构型/润湿性协同调控入水动力学研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多航天器编队指定时间自适应姿态协同控制研究
- 批准号:MS25F030011
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于近似最优控制方法的多能源系统在
线协同优化控制问题研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
滑移抑爆装置协同细水雾抑制甲烷爆炸实验研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
燃料电池车辆动力传动系统功率瞬变过程动力学与参数协同设计方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于协作式神经动力学方法的大规模鲁棒优化研究及其在投资组合优化上的应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
竹叶灰-二氧化碳协同增强全竹骨料混凝土机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
多光束协同增材制造光热流耦合熔池动力学与缺陷跨尺度形成机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
细胞外整合素配体分布和细胞内Rho GTP
酶活性协同调控肿瘤细胞迁移的力学生
物学机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
作业型飞行机器人协作搬运物理交互耦合机理与控制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348956 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
- 批准号:
2349872 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337427 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327827 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
- 批准号:
2242365 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of Snapping of Tethers
合作研究:系绳折断动力学
- 批准号:
2310665 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348955 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant