Mechano-Biologically Informed Molecular Models of Flow Sensitive Biopolymers

流动敏感生物聚合物的力学生物学分子模型

基本信息

  • 批准号:
    1463234
  • 负责人:
  • 金额:
    $ 116.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

In human bodies, bleeding is stopped by forming a clot at the site of vascular damage. Under rapid blood flow conditions associated with injury, the plasma protein von Willebrand Factor (vWF) plays an indispensable role in sticking to both platelets and collagen on damaged vessel walls, allowing the formation of platelet plugs. vWF effectively senses blood flow, changing conformation in high flow from a compact globule to an elongated shape; this reveals binding sites on vWF for platelets and collagen. Abnormalities in vWF adhesion are involved in the pathogenesis of many cardiovascular diseases, such as von Willebrand disease (affecting 1 to 2% of world's population), thrombosis and arteriosclerosis. Although basic biological properties of vWF have been elucidated, little is known about the detailed biomechanical properties of vWF and how these properties dictate its structure and function in varying flow environments. Such information can abet not only better understanding of vWF; it can provide insight for the design of synthetic molecules in pursuit of targeted drug therapies, advancing federal interests in health and medicine.This project will establish, for the first time, a generalized experimental and theoretical platform to investigate the mechanical properties of complicated, multi-domain molecules such as vWF. The platform advanced will provide transformative predictive capability for how flow sensitive biopolymers behave in specific vascular flow scenarios and how that behavior depends on molecular architecture and biological surface chemistry. A single-molecule force spectroscopy will be implemented to systematically probe the mechanical response of vWF monomer fragments, monomers, and multimers; data so obtained will be used to optimize new coarse grain molecular models that predict vWF mechanical behavior with unprecedented quantitative accuracy. The model's predictive capabilities will be further enhanced via fluorescence microscopy analysis of vWF in microfluidic flow chambers with systematically functionalized surfaces. The optimized model will be used to explore how changes to molecular architecture influence biological functionality in varying flow conditions. This work will enable a detailed understanding of the molecular mechanisms underlying conformational changes of vWF and lay crucial groundwork toward biologically inspired materials design and the development of biomimetic devices that resemble the functionality of known biopolymers. In addition, the study will fill the long-standing knowledge gap on the mechanobiology of vWF, and potentially offer new therapeutic approaches to treat von Willebrand disease. This project will educate both undergraduate and graduate STEM students in experimental and theoretical aspects of biomolecular investigation, emphasizing the need for multi-disciplinary, diverse collaborations between practitioners of experiment, computation, and theory. Such immersive STEM educational experiences will best prepare students to confront technological challenges of the future. Through associated outreach efforts, this work will showcase for both technical and non-technical societal audiences the power of high performance computing in exploring complex molecular behavior and advancing new solutions in human health and wellness.
在人体中,通过在血管损伤部位形成血块来止血。在与损伤相关的快速血流条件下,血浆蛋白血管性血液病因子(vWF)在粘附在受损血管壁上的血小板和胶原蛋白上发挥着不可或缺的作用,从而形成血小板栓。vWF有效地感知血流,改变构象在高流量从一个紧凑的球体到一个细长的形状;这揭示了血小板和胶原蛋白在vWF上的结合位点。vWF粘连异常与许多心血管疾病的发病机制有关,如血管性血友病(影响世界人口的1%至2%)、血栓形成和动脉硬化。虽然vWF的基本生物学特性已经被阐明,但对vWF的详细生物力学特性以及这些特性如何决定其在不同流动环境中的结构和功能知之甚少。这些信息不仅有助于更好地理解vWF;它可以为追求靶向药物治疗的合成分子的设计提供见解,促进联邦在健康和医学方面的利益。该项目将首次为研究vWF等复杂多畴分子的力学性质建立一个广义的实验和理论平台。先进的平台将为流动敏感生物聚合物在特定血管流动场景中的行为以及这种行为如何依赖于分子结构和生物表面化学提供革命性的预测能力。采用单分子力谱法系统地探测vWF单体碎片、单体和多聚体的力学响应;获得的数据将用于优化新的粗粒分子模型,以前所未有的定量精度预测vWF的力学行为。该模型的预测能力将通过荧光显微镜对具有系统功能化表面的微流控流室中的vWF进行分析进一步增强。优化后的模型将用于探索分子结构的变化如何影响不同流动条件下的生物功能。这项工作将使人们能够详细了解vWF构象变化的分子机制,并为生物启发材料的设计和类似于已知生物聚合物功能的仿生装置的开发奠定关键基础。此外,该研究将填补长期以来在vWF机制生物学方面的知识空白,并有可能为血管性血友病的治疗提供新的治疗方法。该项目将在生物分子研究的实验和理论方面教育STEM本科生和研究生,强调实验、计算和理论实践者之间多学科、多样化合作的必要性。这种身临其境的STEM教育体验将为学生应对未来的技术挑战做好最好的准备。通过相关的推广工作,这项工作将向技术和非技术社会观众展示高性能计算在探索复杂分子行为和推进人类健康和保健新解决方案方面的力量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edmund Webb III其他文献

Edmund Webb III的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edmund Webb III', 18)}}的其他基金

CC* Compute: Acquisition of a Lehigh University HPC cluster to enhance collaboration, research productivity and educational impact
CC* 计算:收购理海大学 HPC 集群,以增强协作、研究生产力和教育影响
  • 批准号:
    2019035
  • 财政年份:
    2020
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Standard Grant
UNS: Direct Computation of Capillary Force Constitutive Relations for Nanosuspensions
UNS:纳米悬浮液毛细管力本构关系的直接计算
  • 批准号:
    1512449
  • 财政年份:
    2015
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Standard Grant

相似海外基金

Dissecting and Predicting Lethal Prostate Cancer using Biologically Informed Artificial Intelligence
使用生物学信息人工智能剖析和预测致命性前列腺癌
  • 批准号:
    10628274
  • 财政年份:
    2023
  • 资助金额:
    $ 116.2万
  • 项目类别:
Biologically informed design of CD8+ T cell-dependent pre-erythrocytic stage malaria vaccines
CD8 T 细胞依赖性红细胞前阶段疟疾疫苗的生物学知情设计
  • 批准号:
    10341058
  • 财政年份:
    2021
  • 资助金额:
    $ 116.2万
  • 项目类别:
Biologically informed design of CD8+ T cell-dependent pre-erythrocytic stage malaria vaccines
CD8 T 细胞依赖性红细胞前阶段疟疾疫苗的生物学知情设计
  • 批准号:
    10558591
  • 财政年份:
    2021
  • 资助金额:
    $ 116.2万
  • 项目类别:
NCS-FO: Foundations of Biologically Informed Intelligent Machines for Spatial Navigation
NCS-FO:空间导航生物信息智能机器的基础
  • 批准号:
    2024607
  • 财政年份:
    2021
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Standard Grant
Biologically-informed development of autologous platelet-based wound healing gels
基于自体血小板的伤口愈合凝胶的生物学信息开发
  • 批准号:
    2547258
  • 财政年份:
    2021
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Studentship
A novel biologically informed polygenic risk score for depression in girls and women
女孩和妇女抑郁症的新型生物学多基因风险评分
  • 批准号:
    466740
  • 财政年份:
    2021
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Studentship Programs
CAREER: Towards a Biologically Informed Intervention for Emotionally Dysregulated Adolescents and Adults with Autism Spectrum Disorder
职业:对患有自闭症谱系障碍的情绪失调青少年和成人进行生物学干预
  • 批准号:
    1844885
  • 财政年份:
    2019
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Continuing Grant
Childhood adversity and biologically-informed genetic profiling: the early origins of cardio-metabolic disease
童年逆境和生物信息遗传分析:心脏代谢疾病的早期起源
  • 批准号:
    401255
  • 财政年份:
    2019
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Operating Grants
Biologically-informed Representations for Integrating Heterogeneous Multi-Modal data for Deep Neural Networks in Drug Discovery
药物发现中深度神经网络集成异构多模态数据的生物信息表示
  • 批准号:
    2114324
  • 财政年份:
    2018
  • 资助金额:
    $ 116.2万
  • 项目类别:
    Studentship
A Biologically Informed Method for Detecting Associations with Rare Variants
检测与稀有变异关联的生物学方法
  • 批准号:
    8723722
  • 财政年份:
    2011
  • 资助金额:
    $ 116.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了