Dissecting and Predicting Lethal Prostate Cancer using Biologically Informed Artificial Intelligence
使用生物学信息人工智能剖析和预测致命性前列腺癌
基本信息
- 批准号:10628274
- 负责人:
- 金额:$ 48.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdjuvantAdjuvant StudyArchitectureArtificial IntelligenceBindingBiologicalBiological MarkersCancer and Leukemia Group BCessation of lifeCharacteristicsClinicalClinical DataClinical TrialsComplexComputer Vision SystemsDNA RepairDNA Repair GeneDana-Farber Cancer InstituteData AnalysesDevelopmentDiseaseEventFutureGenetic TranscriptionGenomicsGerm-Line MutationHistopathologyImageImmuneIndolentLearningLocalized DiseaseMalignant neoplasm of prostateMediatingMedical OncologyMethodologyModelingMolecularMolecular ProfilingMutationNeoplasm MetastasisOperative Surgical ProceduresOutcomeOutcome MeasurePathologicPathologistPathway interactionsPatientsPatternPhasePhenotypePropertyProstateRadiationRadiation therapyRadical ProstatectomyRecurrenceRecurrent diseaseRelapseRetrospective cohortRiskRisk FactorsSomatic MutationSpecimenTechniquesTherapeuticTissuesUrologic Oncologyadvanced diseaseanticancer researchartificial intelligence algorithmcancer carecancer genomicscancer typecandidate validationclinical biomarkersclinical predictive modelclinical prognosticclinical translationcohortcomputer sciencedeep learningdeep learning modeldigitaldigital pathologygenome-widehigh riskhigh risk menhormone therapyimprintimprovedinnovationmenmolecular modelingmolecular subtypesneural networknovelnovel therapeuticspatient populationphenotypic datapoint of careprecision oncologypredictive modelingprognosticprognostic modelprognostic performanceprogression riskprostate cancer modelprostate cancer riskstandard of caresurvival outcometranslational potentialtreatment strategytumor
项目摘要
PROJECT SUMMARY – PROJECT THREE
Treatment strategies for intermediate and high-risk localized prostate cancer (PCa) include surgery or
radiation with or without hormonal therapy. Multiple molecular factors, including germline and somatic
alterations in DNA repair genes and tissue-based transcriptional biomarkers, have biological and prognostic
relevance in these clinical settings yet are rarely used today to guide treatment decisions. Determination of
the interacting and co- occurring molecular features that jointly drive indolent or aggressive clinical outcomes
in this setting is urgently needed to enable molecularly guided therapeutic strategies and biologically
grounded predictive models for clinical use. Furthermore, complex molecular states may converge on
histopathological patterns to augment these predictions, but these properties are difficult to quantify,
integrate, and generalize across diverse patient populations. The advent of large and diverse patient cohorts
with clinically embedded molecular characterization, digital histopathology techniques, and key outcome
measures, along with innovations in computation and deep learning to analyze and interpret these data, has
created an opportunity to profoundly expand the discovery and translational potential of molecular,
pathologic, and phenotypic data for patients with localized PCa. Our overarching hypothesis is that
interacting molecular, pathologic, and phenotypic features define prognostic outcomes in intermediate and
high-risk localized PCa after surgery, and that biologically guided interpretable deep learning, paired with
harmonized cohorts representative of PCa diversity, will transform our understanding of indolent versus
potentially lethal localized PCa and deliver on the promise of precision cancer medicine. Toward that end, the
specific aims of this proposal are: 1) Dissect the interacting germline and somatic properties that mediate
localized PCa using biologically guided neural networks; 2) Determine the convergent spatial histopathologic
properties of molecularly and clinically distinct forms of PCa; 3) Develop and validate a clinical grade
molecular prognostic model guided by biological networks in real-world and clinical trial settings. For these
aims, we will build on our team’s extensive expertise in PCa genomics, computer science, and medical and
urologic oncology. Critically, we will embed our approaches in the context of harmonized and representative
PCa cohorts. The ability to understand why some intermediate and high-risk localized prostate cancers are
phenotypically aggressive, and therefore predict which PCa will progress following curative-intent treatment
in this manner, would significantly advance basic PCa research and clinical translation. Broadly, this project
will strive to transform precision cancer medicine for prostate cancer and serve as a model for the creation,
development, and application of these emerging methodologies across cancer types and contexts.
项目概要-项目三
中高危局限性前列腺癌(PCa)的治疗策略包括手术或
放疗加或不加激素治疗。多种分子因素,包括生殖系和体细胞
DNA修复基因和基于组织的转录生物标志物的改变,具有生物学和预后
这些临床环境中的相关性,但今天很少用于指导治疗决策。测定
共同驱动惰性或侵袭性临床结果的相互作用和共同发生的分子特征
在这种情况下,迫切需要使分子指导的治疗策略和生物学
用于临床的接地预测模型。此外,复杂的分子状态可以收敛于
组织病理学模式来增强这些预测,但这些特性难以量化,
整合并推广到不同的患者群体。大型和多样化患者队列的出现
临床嵌入式分子表征,数字组织病理学技术,
沿着计算和深度学习方面的创新来分析和解释这些数据,
创造了一个机会,深刻扩大分子的发现和翻译潜力,
病理和表型数据的患者与局限性PCa。我们的首要假设是
相互作用的分子、病理和表型特征决定了中间型和中间型的预后结果。
手术后高风险的局部PCa,以及生物学引导的可解释的深度学习,
代表PCa多样性的协调队列,将改变我们对惰性与
潜在致命的局部PCa,并实现精准癌症医学的承诺。为此,
这项建议的具体目标是:1)解剖介导的相互作用的种系和体细胞特性
使用生物学引导的神经网络定位PCa; 2)确定会聚的空间组织病理学
PCa的分子和临床不同形式的性质; 3)开发和验证临床分级
在现实世界和临床试验环境中由生物网络指导的分子预后模型。为这些
目标,我们将建立在我们的团队在PCa基因组学,计算机科学和医疗和
泌尿肿瘤学重要的是,我们将把我们的方法嵌入到协调和有代表性的背景下,
PCa队列。了解为什么一些中度和高度风险的局限性前列腺癌
表型侵袭性,因此预测哪些PCa将在治愈性治疗后进展
以这种方式,将显著推进基础PCa研究和临床转化。总的来说,这个项目
将致力于前列腺癌的精准癌症医学转型,并作为创建的典范,
这些新兴的方法学在癌症类型和背景中的发展和应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eliezer M Van Allen其他文献
Eliezer M Van Allen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eliezer M Van Allen', 18)}}的其他基金
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10443070 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
Molecular Origins and Evolution to Chemoresistance in Germ Cell Tumors
生殖细胞肿瘤化疗耐药的分子起源和进化
- 批准号:
10773483 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
The Cellular Geography of Therapeutic Resistance in Cancer
癌症治疗耐药的细胞地理学
- 批准号:
10819853 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
A statistical framework to systematically characterize cancer driver mutations in noncoding genomic regions
系统地表征非编码基因组区域中癌症驱动突变的统计框架
- 批准号:
10260680 - 财政年份:2019
- 资助金额:
$ 48.53万 - 项目类别:
Integrative Somatic and Germline Computational Biology to Redefine Clinical Actionability in Solid Tumors
综合体细胞和种系计算生物学重新定义实体瘤的临床可操作性
- 批准号:
9913487 - 财政年份:2018
- 资助金额:
$ 48.53万 - 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10379230 - 财政年份:2018
- 资助金额:
$ 48.53万 - 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
- 批准号:
10084830 - 财政年份:2018
- 资助金额:
$ 48.53万 - 项目类别:
Integrative Somatic and Germline Computational Biology to Redefine Clinical Actionability in Solid Tumors
综合体细胞和种系计算生物学重新定义实体瘤的临床可操作性
- 批准号:
10160834 - 财政年份:2018
- 资助金额:
$ 48.53万 - 项目类别:
Integrative Somatic and Germline Computational Biology to Redefine Clinical Actionability in Solid Tumors
综合体细胞和种系计算生物学重新定义实体瘤的临床可操作性
- 批准号:
9517271 - 财政年份:2018
- 资助金额:
$ 48.53万 - 项目类别:
Integrative Somatic and Germline Computational Biology to Redefine Clinical Actionability in Solid Tumors
综合体细胞和种系计算生物学重新定义实体瘤的临床可操作性
- 批准号:
10396664 - 财政年份:2018
- 资助金额:
$ 48.53万 - 项目类别:
相似海外基金
Metachronous synergistic effects of preoperative viral therapy and postoperative adjuvant immunotherapy via long-term antitumor immunity
术前病毒治疗和术后辅助免疫治疗通过长期抗肿瘤免疫产生异时协同效应
- 批准号:
23K08213 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving the therapeutic immunity of cancer vaccine with multi-adjuvant polymeric nanoparticles
多佐剂聚合物纳米粒子提高癌症疫苗的治疗免疫力
- 批准号:
2881726 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
Studentship
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
- 批准号:
10735090 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
Evaluation of the Sensitivity to Endocrine Therapy (SET ER/PR) Assay to predict benefit from extended duration of adjuvant endocrine therapy in the NSABP B-42 trial
NSABP B-42 试验中内分泌治疗敏感性 (SET ER/PR) 测定的评估,用于预测延长辅助内分泌治疗持续时间的益处
- 批准号:
10722146 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
DEVELOPMENT OF SAS A SYNTHETIC AS01-LIKE ADJUVANT SYSTEM FOR INFLUENZA VACCINES
流感疫苗类 AS01 合成佐剂系统 SAS 的开发
- 批准号:
10935776 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
DEVELOPMENT OF SMALL-MOLECULE DUAL ADJUVANT SYSTEM FOR INFLUENZA VIRUS VACCINE
流感病毒疫苗小分子双佐剂体系的研制
- 批准号:
10935796 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
A GLYCOLIPID ADJUVANT 7DW8-5 FOR MALARIA VACCINES
用于疟疾疫苗的糖脂佐剂 7DW8-5
- 批准号:
10935775 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
Adjuvant strategies for universal and multiseasonal influenza vaccine candidates in the context of pre-existing immunity
在已有免疫力的情况下通用和多季节流感候选疫苗的辅助策略
- 批准号:
10649041 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别:
Adjuvant Photodynamic Therapy to Reduce Bacterial Bioburden in High-Energy Contaminated Open Fractures
辅助光动力疗法可减少高能污染开放性骨折中的细菌生物负载
- 批准号:
10735964 - 财政年份:2023
- 资助金额:
$ 48.53万 - 项目类别: