Achieving Consensus Among Autonomous Dynamic Agents using Control Laws that Maintain Performance as Network Size Increases

使用随着网络规模增加而保持性能的控制律在自治动态代理之间达成共识

基本信息

项目摘要

Recent advances in automation and robotics have created a pressing need for new "protocols," that is, for algorithms or control laws that allow teams of multiple autonomous agents to cooperate and accomplish complex tasks. Unfortunately, many of the best protocols for multi-agent coordination problems suffer from scalability issues, that is, while they perform well when the number of agents is small or moderate, their performance degrades sharply as the number of agents in the network grows. This project will develop new control laws for a range of multi-agent problems whose performance is maintained even as network size becomes very large. A number of tasks with broad practical importance will be considered, including optimal distribution of limited resources among agents, cooperative tracking and estimation, and adaptive positioning for optimal sensing. With these new protocols, large groups of autonomous agents(such as mobile robots or unpiloted aerial vehicles) will be able to quickly accomplish a number of useful and important tasks. These advances are needed to allow emerging technologies for autonomous vehicles and other networked autonomous systems to realize their potential economic and societal benefits.The main technical contribution will be to speed up a widely-used class of nearest neighbor interactions. It is common to optimize a global objective in multi-agent control by means of local updates that interleave the maximization local objectives with consensus terms that effectively couple these objectives. This project will develop techniques to speed up such consensus-like updates. By a judicious combination of weight-selection and extrapolation by each agent, the convergence time of consensus updates will be improved by one or several orders of magnitude. These speedups further imply quick convergence times for a number of multi-agent problems relying on consensus-like updates. The techniques applied mix recent advances from algebraic graph theory, optimization, switched dynamical systems, and the joint spectral radius.
自动化和机器人技术的最新进展迫切需要新的“协议”,即算法或控制律,允许多个自主代理的团队合作并完成复杂的任务。不幸的是,许多最好的多代理协调问题的协议遭受可扩展性问题,也就是说,虽然他们表现良好,当代理的数量是小或中等,他们的性能急剧下降,作为网络中的代理数量的增长。该项目将为一系列多智能体问题开发新的控制律,即使网络规模变得非常大,其性能也会保持不变。一些具有广泛的实际意义的任务将被考虑,包括代理,合作跟踪和估计,以及自适应定位的最佳传感器之间的有限资源的最佳分配。有了这些新的协议,大群的自主代理(如移动的机器人或无人驾驶飞行器)将能够快速完成许多有用和重要的任务。这些进步是自动驾驶汽车和其他联网自动驾驶系统的新兴技术实现其潜在经济和社会效益所必需的。主要的技术贡献将是加速广泛使用的最近邻交互。在多智能体控制中,通过将最大化局部目标与有效耦合这些目标的共识项交织的局部更新来优化全局目标是常见的。该项目将开发技术,以加快这种类似共识的更新。通过每个代理的权重选择和外推的明智组合,共识更新的收敛时间将提高一个或几个数量级。这些加速进一步意味着快速收敛时间的多智能体问题依赖于共识类更新。所应用的技术混合了代数图论、优化、切换动力系统和联合谱半径的最新进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Olshevsky其他文献

Limitations and Tradeoffs in Minimum Input Selection Problems
最小输入选择问题的限制和权衡
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Jadbabaie;Alexander Olshevsky;Milad Siami
  • 通讯作者:
    Milad Siami
Network Lifetime and Power Assignment in ad hoc Wireless Networks
自组织无线网络中的网络生命周期和功率分配
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Călinescu;S. Kapoor;Alexander Olshevsky;A. Zelikovsky
  • 通讯作者:
    A. Zelikovsky
Asymptotic Network Independence and Step-Size for A Distributed Subgradient Method
  • DOI:
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Olshevsky
  • 通讯作者:
    Alexander Olshevsky
Improved Approximation Algorithms for the Quality of Service Multicast Tree Problem
  • DOI:
    10.1007/s00453-004-1133-y
  • 发表时间:
    2005-03-02
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Marek Karpinski;Ion I. Mandoiu;Alexander Olshevsky;Alexander Zelikovsky
  • 通讯作者:
    Alexander Zelikovsky
Minimum input selection for structural controllability

Alexander Olshevsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Olshevsky', 18)}}的其他基金

CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
  • 批准号:
    2317079
  • 财政年份:
    2024
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant
Computationally Efficient Methods for Control of Epidemics on Networks
控制网络流行病的计算有效方法
  • 批准号:
    2240848
  • 财政年份:
    2023
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant
CIF: Small: How Much of Reinforcement Learning is Gradient Descent?
CIF:小:强化学习中有多少是梯度下降?
  • 批准号:
    2245059
  • 财政年份:
    2023
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant
Efficiently Distributing Optimization over Large-Scale Networks
在大规模网络上高效分布优化
  • 批准号:
    1933027
  • 财政年份:
    2019
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant
CAREER: Algorithms and Fundamental Limitations for Sparse Control
职业:稀疏控制的算法和基本限制
  • 批准号:
    1740451
  • 财政年份:
    2017
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant
Achieving Consensus Among Autonomous Dynamic Agents using Control Laws that Maintain Performance as Network Size Increases
使用随着网络规模增加而保持性能的控制律在自治动态代理之间达成共识
  • 批准号:
    1740452
  • 财政年份:
    2016
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant
CAREER: Algorithms and Fundamental Limitations for Sparse Control
职业:稀疏控制的算法和基本限制
  • 批准号:
    1351684
  • 财政年份:
    2014
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant

相似海外基金

A Delphi survey to generate consensus among international experts on elements of an intraoperative transfusion protocol
一项德尔菲调查旨在让国际专家就术中输血方案的要素达成共识
  • 批准号:
    463049
  • 财政年份:
    2022
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Operating Grants
A Delphi survey to generate consensus among international experts on elements of an intraoperative transfusion protocol
一项德尔菲调查旨在让国际专家就术中输血方案的要素达成共识
  • 批准号:
    460778
  • 财政年份:
    2022
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Miscellaneous Programs
Cultural Consensus Modeling to Identify Culturally Relevant Risk Factors for Suicide among Black Youth
文化共识模型识别黑人青年自杀的文化相关风险因素
  • 批准号:
    10528029
  • 财政年份:
    2022
  • 资助金额:
    $ 30.09万
  • 项目类别:
Cultural Consensus Modeling to Identify Culturally Relevant Risk Factors for Suicide among Black Youth
文化共识模型识别黑人青年自杀的文化相关风险因素
  • 批准号:
    10681432
  • 财政年份:
    2022
  • 资助金额:
    $ 30.09万
  • 项目类别:
Consensus-based algorithms to address opioid misuse behaviors among individuals prescribed long-term opioid therapy: developing implementation strategies and pilot testing
基于共识的算法,用于解决接受长期阿片类药物治疗的个体中阿片类药物滥用行为:制定实施策略和试点测试
  • 批准号:
    10405067
  • 财政年份:
    2020
  • 资助金额:
    $ 30.09万
  • 项目类别:
Consensus-based algorithms to address opioid misuse behaviors among individuals prescribed long-term opioid therapy: developing implementation strategies and pilot testing
基于共识的算法,用于解决接受长期阿片类药物治疗的个体中阿片类药物滥用行为:制定实施策略和试点测试
  • 批准号:
    10202542
  • 财政年份:
    2020
  • 资助金额:
    $ 30.09万
  • 项目类别:
Consensus-based algorithms to address opioid misuse behaviors among individuals prescribed long-term opioid therapy: developing implementation strategies and pilot testing
基于共识的算法,用于解决接受长期阿片类药物治疗的个体中阿片类药物滥用行为:制定实施策略和试点测试
  • 批准号:
    10055996
  • 财政年份:
    2020
  • 资助金额:
    $ 30.09万
  • 项目类别:
Achieving Consensus Among Autonomous Dynamic Agents using Control Laws that Maintain Performance as Network Size Increases
使用随着网络规模增加而保持性能的控制律在自治动态代理之间达成共识
  • 批准号:
    1740452
  • 财政年份:
    2016
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Standard Grant
A Study on Consensus Building for an Erosion Control Project on the Basis of Corporation among Citizen, Governments and Experts
基于公民、政府和专家合作的侵蚀控制项目共识构建研究
  • 批准号:
    16K00674
  • 财政年份:
    2016
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Translating Epigenetics in the Canadian Regulatory Environment: A 3-Round Delphi Study to Identify Consensus and Dissension among International Experts about the Ethical, Legal and Social Implications of Epigenetics and Prioritize Policy Requirements
在加拿大监管环境中转化表观遗传学:一项三轮德尔菲研究,旨在确定国际专家之间关于表观遗传学的伦理、法律和社会影响的共识和分歧,并确定政策要求的优先顺序
  • 批准号:
    362069
  • 财政年份:
    2016
  • 资助金额:
    $ 30.09万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了