Computationally Efficient Methods for Control of Epidemics on Networks
控制网络流行病的计算有效方法
基本信息
- 批准号:2240848
- 负责人:
- 金额:$ 35.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The COVID-19 epidemic has brought the difficult tradeoffs of epidemic control to the forefront of public attention. While epidemics can be mitigated through a variety of interventions such as lockdowns, travel restrictions, mandated social distancing, and vaccine allocations, many of these methods can be extraordinarily costly, both in terms of creating hardship and unemployment as well as in terms of reducing access to crucial services for vulnerable populations. Furthermore, popular backlash against harsh epidemic control interventions can make their long term sustainability impossible. This project will address the problem of designing such interventions optimally. The goal will be to design a mix of interventions such as those mentioned above to achieve a target rate for how fast an epidemic should decay while imposing the least hardship upon society at large. This project will develop interventions that are both spatially heterogeneous and coordinated among different locations. Optimal epidemic control strategies will be obtained by treating different locations differently, based both on the number of cases at each location as well as the geographic importance of each location for future epidemic spread. The methods developed for this purpose will be robust across different epidemic models and likely applicable to future pandemics, which may not share key features of COVID-19. The technical approach will take into account uncertainty in disease parameters, which can vary not only depending on location but are constantly evolving in time depending on interventions and human behavior. Finally, solutions will also be developed that respect certain fairness constraints, such as ensuring that locations with fewer cases do not face harsher lockdowns, which is a counter-intuitive feature of some optimal lockdowns. The newly developed methods will be guaranteed to work in a number of operations that is polynomial, and often linear, in the size of the spatial epidemic model, ensuring that the final results are applicable to large-scale epidemic models in the United States.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2019冠状病毒病疫情使疫情控制的艰难权衡成为公众关注的焦点。虽然可以通过封锁、旅行限制、强制保持社会距离和分配疫苗等各种干预措施来缓解流行病,但其中许多方法可能代价高昂,不仅会造成困难和失业,还会减少弱势群体获得关键服务的机会。此外,公众对严厉的流行病控制干预措施的强烈反对可能使其无法长期持续。本项目将解决如何以最佳方式设计此类干预措施的问题。目标将是设计诸如上述各种干预措施的组合,以达到流行病应以多快的速度消退的目标率,同时使整个社会遭受的困难最少。该项目将开发在不同地点之间既具有空间异质性又具有协调性的干预措施。根据每个地点的病例数以及每个地点对未来流行病传播的地理重要性,对不同地点进行区别对待,将获得最优的流行病控制策略。为此目的开发的方法将在不同的流行病模型中具有鲁棒性,并可能适用于未来的大流行,这些大流行可能不具有COVID-19的关键特征。技术方法将考虑到疾病参数的不确定性,这些参数不仅因地点而异,而且随着干预措施和人类行为而不断演变。最后,还将制定尊重某些公平约束的解决方案,例如确保病例较少的地点不会面临更严厉的封锁,这是一些最优封锁的反直觉特征。新开发的方法将保证适用于空间流行病模型大小的多项式运算,而且往往是线性运算,从而确保最终结果适用于美国的大规模流行病模型。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Olshevsky其他文献
Limitations and Tradeoffs in Minimum Input Selection Problems
最小输入选择问题的限制和权衡
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
A. Jadbabaie;Alexander Olshevsky;Milad Siami - 通讯作者:
Milad Siami
Network Lifetime and Power Assignment in ad hoc Wireless Networks
自组织无线网络中的网络生命周期和功率分配
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
G. Călinescu;S. Kapoor;Alexander Olshevsky;A. Zelikovsky - 通讯作者:
A. Zelikovsky
Asymptotic Network Independence and Step-Size for A Distributed Subgradient Method
- DOI:
- 发表时间:
2020-03 - 期刊:
- 影响因子:0
- 作者:
Alexander Olshevsky - 通讯作者:
Alexander Olshevsky
Improved Approximation Algorithms for the Quality of Service Multicast Tree Problem
- DOI:
10.1007/s00453-004-1133-y - 发表时间:
2005-03-02 - 期刊:
- 影响因子:0.700
- 作者:
Marek Karpinski;Ion I. Mandoiu;Alexander Olshevsky;Alexander Zelikovsky - 通讯作者:
Alexander Zelikovsky
Minimum input selection for structural controllability
- DOI:
10.1109/acc.2015.7171062 - 发表时间:
2014-07 - 期刊:
- 影响因子:0
- 作者:
Alexander Olshevsky - 通讯作者:
Alexander Olshevsky
Alexander Olshevsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Olshevsky', 18)}}的其他基金
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
- 批准号:
2317079 - 财政年份:2024
- 资助金额:
$ 35.24万 - 项目类别:
Standard Grant
CIF: Small: How Much of Reinforcement Learning is Gradient Descent?
CIF:小:强化学习中有多少是梯度下降?
- 批准号:
2245059 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
Standard Grant
Efficiently Distributing Optimization over Large-Scale Networks
在大规模网络上高效分布优化
- 批准号:
1933027 - 财政年份:2019
- 资助金额:
$ 35.24万 - 项目类别:
Standard Grant
CAREER: Algorithms and Fundamental Limitations for Sparse Control
职业:稀疏控制的算法和基本限制
- 批准号:
1740451 - 财政年份:2017
- 资助金额:
$ 35.24万 - 项目类别:
Standard Grant
Achieving Consensus Among Autonomous Dynamic Agents using Control Laws that Maintain Performance as Network Size Increases
使用随着网络规模增加而保持性能的控制律在自治动态代理之间达成共识
- 批准号:
1740452 - 财政年份:2016
- 资助金额:
$ 35.24万 - 项目类别:
Standard Grant
Achieving Consensus Among Autonomous Dynamic Agents using Control Laws that Maintain Performance as Network Size Increases
使用随着网络规模增加而保持性能的控制律在自治动态代理之间达成共识
- 批准号:
1463262 - 财政年份:2015
- 资助金额:
$ 35.24万 - 项目类别:
Standard Grant
CAREER: Algorithms and Fundamental Limitations for Sparse Control
职业:稀疏控制的算法和基本限制
- 批准号:
1351684 - 财政年份:2014
- 资助金额:
$ 35.24万 - 项目类别:
Standard Grant
相似海外基金
Efficient and effective methods for classifying massive time series data
海量时间序列数据高效有效的分类方法
- 批准号:
DP240100048 - 财政年份:2024
- 资助金额:
$ 35.24万 - 项目类别:
Discovery Projects
Developing efficient and non-transgenic transformation methods for sterile and/or recalcitrant crops
开发针对不育和/或顽固作物的高效非转基因转化方法
- 批准号:
10107465 - 财政年份:2024
- 资助金额:
$ 35.24万 - 项目类别:
Launchpad
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
- 批准号:
2237616 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
Continuing Grant
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
- 批准号:
23H03353 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of efficient synthetic methods for artificial nucleic acids aimed at improving activity and reducing toxicity of oligonucleotide medicines
开发人工核酸的有效合成方法,旨在提高寡核苷酸药物的活性并降低毒性
- 批准号:
23K04930 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diffusion coatings by energy efficient methods
采用节能方法的扩散涂层
- 批准号:
10074625 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
Launchpad
CAREER: Development of Adaptive and Efficient Computational Inverse Design Methods for Organic Functional Materials
职业:有机功能材料自适应高效计算逆向设计方法的开发
- 批准号:
2339804 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
Standard Grant
Elucidating the neural mechanisms of pre-performance routines and developing efficient training methods
阐明预表演程序的神经机制并开发有效的训练方法
- 批准号:
23K16669 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of efficient methods for suppressing the invasive alien tree species, Akagi, in the Ogasawara Islands, and environmental impact assessment
小笠原群岛外来入侵树种“赤城”的有效抑制方法开发及环境影响评价
- 批准号:
23K18541 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Efficient and Practical Privacy-Preserving Methods for Large-Scale Genomic Statistical Analysis
开发用于大规模基因组统计分析的高效实用的隐私保护方法
- 批准号:
23KJ0649 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows