Understanding the Mechanical Behavior of Novel High-Strength Nanoscale Structures

了解新型高强度纳米结构的机械行为

基本信息

  • 批准号:
    1463306
  • 负责人:
  • 金额:
    $ 43.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-01 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

One application of nanostructured materials is incorporation into solid surfaces, to alter the properties and behavior of these surfaces. These nanostructures, however, often deform very easily under contact stresses encountered in typical applications, which severely limits their durability. A novel nanoscale "core-shell" structure was recently discovered to have unusually high strength and deformation resistance; however, the nanoscale mechanisms that contribute to this unusual mechanical behavior are not currently known. This award supports research to gain a fundamental understanding of the mechanical behavior of the novel high-strength nanoscale structures, in order to design nano-textured surfaces using these structures for optimized mechanical performance. This research will provide valuable information to guide the rational design of nano-textured surfaces employing nanoscale these core-shell structures for micro/nano-electro-mechanical systems (MEMS and NEMS), and provide potential solutions for this multi-billion dollar industry to solve plaguing issues of wear and contact mechanics. The novel nanoscale core-shell structure concept can also be applied to other applications, including magnetic recording, nanoimprinting, surface wetting, and biomedical applications, where mechanical integrity of the nanostructures is of paramount importance. Comprehensive education and outreach activities will be implemented which will significantly stimulate the next generation's interest in nanomaterials and nanomechanics and will improve America's future competitiveness in nanotechnology.This award supports an integrated experimental and modeling approach to bridge material length scales, to (1) perform nanoindentation experiments to investigate the effects of core and shell materials, core size and microstructure, and shell thickness and shell/core volume ratio on the mechanical behavior of nanoscale core-shell structures, including strain hardening and fatigue, (2) to develop and validate molecular dynamics and coupled atomistic-continuum multiscale simulation models to understand the role of the core/shell interface, core/substrate interface, core microstructure, core material, and substrate thickness; and determine the mechanisms contributing to the large recoverable deformation and high strength of the nanoscale core-shell structures, and (3) after model validation, to computationally explore a sufficient core/shell parametric space so that the fundamental understanding provided by the simulations can guide the fabrication of nanoscale core-shell structures with optimal behavior, beyond the original experimental space. The research will result in a fundamental understanding of the unique mechanical behavior of nanoscale core-shell structures attached to substrates and identify the mechanisms that provide the novel mechanical behavior of these structures. The research can also result in molecular dynamics and multiscale models that can be used as design tools for surface engineering with nanoscale core-shell structures.
纳米结构材料的一个应用是掺入固体表面,以改变这些表面的性质和行为。然而,这些纳米结构通常在典型应用中遇到的接触应力下非常容易变形,这严重限制了它们的耐久性。最近发现一种新的纳米级“核-壳”结构具有异常高的强度和抗变形性;然而,导致这种不寻常的机械行为的纳米级机制目前尚不清楚。该奖项支持对新型高强度纳米级结构的机械行为进行基本了解的研究,以便使用这些结构设计纳米纹理表面,以优化机械性能。这项研究将提供有价值的信息,以指导合理设计的纳米织构表面采用纳米尺度这些核壳结构的微/纳米机电系统(MEMS和NEMS),并提供潜在的解决方案,这个数十亿美元的产业,以解决磨损和接触力学的困扰问题。新的纳米级核-壳结构概念也可以应用于其他应用,包括磁记录、纳米压印、表面润湿和生物医学应用,其中纳米结构的机械完整性是至关重要的。将实施全面的教育和外展活动,这将显着激发下一代对纳米材料和纳米力学的兴趣,并将提高美国未来在纳米技术方面的竞争力。该奖项支持综合实验和建模方法来连接材料长度尺度,以(1)进行纳米压痕实验,以调查核和壳材料、核尺寸和微观结构的影响,以及壳厚度和壳/核体积比对纳米级核-壳结构的机械行为的影响,包括应变硬化和疲劳,(2)开发和验证分子动力学和耦合原子连续多尺度模拟模型,以理解核/壳界面、核/基底界面、核微观结构、核材料和基底厚度的作用;并确定纳米级核壳结构大的可恢复变形和高强度的机理;(3)模型验证后,通过计算探索足够的核/壳参数空间,以便模拟提供的基本理解可以指导纳米级核的制造,具有最佳性能的壳结构,超出了原始实验空间。该研究将导致对附着在基底上的纳米级核壳结构的独特机械行为的基本理解,并确定提供这些结构的新颖机械行为的机制。该研究还可以产生分子动力学和多尺度模型,可用作纳米级核壳结构表面工程的设计工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Min Zou其他文献

Minimal Tooth Number of Flexspline in Harmonic Gear Drive with External Wave Generator
外波发生器谐波齿轮传动中柔轮的最小齿数
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hai-Lin Zhu(祝海林);Hong-nen Wu;Min Zou;Xing-pei Qin;Pei-yi Song;Jun Pan
  • 通讯作者:
    Jun Pan
Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a
  • DOI:
    10.1038/s41467-018-05209-1.
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Dongchang Xiao;Xiaoning Liu;Min Zhang;Min Zou;Qinqin Deng;Dayu Sun;Xuting Bian;Yulong Cai;Yanan Guo;Shuting Liu;Shengguo Li;Evelyn Shiang;Hongyu Zhong;Lin Cheng;Haiwei Xu;Kangxin Jin;Mengqing Xiang
  • 通讯作者:
    Mengqing Xiang
The classification decision tree fused with neural network realizes the intelligent transformation of data
融合神经网络的分类决策树实现数据的智能变换
Classroom Writing Assessment and Feedback in L2 School Contexts
二语学校环境中的课堂写作评估和反馈
A review on evolution laws and mechanism of concrete performance under cryogenic circumstance from multi-scale perspectives
从多尺度角度看低温环境下混凝土性能的演化规律及机制综述
  • DOI:
    10.1016/j.jobe.2022.105666
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Juanhong Liu;Dawei Zhou;Linian Cheng;Ruidong Wu;Yayun Xi;Min Zou
  • 通讯作者:
    Min Zou

Min Zou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Min Zou', 18)}}的其他基金

PFI-RP: Low-Friction Durable Coatings for Improving Energy Efficiency in Conveyor Systems
PFI-RP:低摩擦耐用涂层,可提高输送系统的能源效率
  • 批准号:
    2141026
  • 财政年份:
    2022
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Standard Grant
I-Corps: Low-Friction and Durable Graphite Coatings for Conveyor System Applications
I-Corps:适用于输送系统应用的低摩擦且耐用的石墨涂层
  • 批准号:
    2053022
  • 财政年份:
    2021
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Standard Grant
Wear-Resistant Thin Polytetrafluoroethylene Coatings through Nanoscale Interface Engineering
通过纳米级界面工程制备耐磨薄聚四氟乙烯涂层
  • 批准号:
    1563227
  • 财政年份:
    2016
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Standard Grant
NUE: Integrating Nanotechnology into Undergraduate Engineering Education at the University of Arkansas
NUE:将纳米技术融入阿肯色大学本科工程教育
  • 批准号:
    1138248
  • 财政年份:
    2011
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Standard Grant
CAREER: Nano-Engineered Surfaces: Fabrication and Mechanical and Tribological Properties
职业:纳米工程表面:制造以及机械和摩擦学性能
  • 批准号:
    0645040
  • 财政年份:
    2007
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Standard Grant
Tribology of Nano-patterned Surfaces
纳米图案表面的摩擦学
  • 批准号:
    0600642
  • 财政年份:
    2006
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Standard Grant
NER: Exploration of a Nano-engineered Flagellar Motor Based TNT Detection System
NER:基于纳米工程鞭毛电机的 TNT 检测系统的探索
  • 批准号:
    0508435
  • 财政年份:
    2005
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Understanding the Combined Effect of Microstructure and Topology on the Mechanical Behavior of Additively Manufactured Lattice Structures
职业:了解微观结构和拓扑对增材制造晶格结构机械行为的综合影响
  • 批准号:
    2223314
  • 财政年份:
    2021
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Combined Effect of Microstructure and Topology on the Mechanical Behavior of Additively Manufactured Lattice Structures
职业:了解微观结构和拓扑对增材制造晶格结构机械行为的综合影响
  • 批准号:
    1943465
  • 财政年份:
    2020
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Standard Grant
Understanding the Structure, Corrosion and Mechanical Behavior of Nanostructured Al-V Alloys Produced by High-Energy Ball Milling and Subsequent Consolidation
了解通过高能球磨和后续固结生产的纳米结构 Al-V 合金的结构、腐蚀和机械行为
  • 批准号:
    2131440
  • 财政年份:
    2020
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Standard Grant
Understanding the Structure, Corrosion and Mechanical Behavior of Nanostructured Al-V Alloys Produced by High-Energy Ball Milling and Subsequent Consolidation
了解通过高能球磨和后续固结生产的纳米结构 Al-V 合金的结构、腐蚀和机械行为
  • 批准号:
    1760204
  • 财政年份:
    2018
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Standard Grant
EAGER: Understanding Nonlinear Mechanical Behavior in Porous Infrastructure Materials
EAGER:了解多孔基础设施材料中的非线性机械行为
  • 批准号:
    1744371
  • 财政年份:
    2017
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Standard Grant
CAREER: Understanding Nanoscale Deformation by Characterizing the Mechanical Behavior of Nanoporous Noble Metals
职业:通过表征纳米多孔贵金属的机械行为来了解纳米级变形
  • 批准号:
    0847693
  • 财政年份:
    2008
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Continuing Grant
A Multi-Scale Approach to Understanding the Mechanical and Biochemical Behavior of Tissue Engineered Blood Vessels
了解组织工程血管的机械和生化行为的多尺度方法
  • 批准号:
    0700507
  • 财政年份:
    2007
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Standard Grant
In Situ Low Load Mechanical Behavior of Skeletal Muscle: An Improved Understanding of Injury and Healing
骨骼肌原位低负荷机械行为:加深对损伤和愈合的理解
  • 批准号:
    0548468
  • 财政年份:
    2005
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Continuing grant
In Situ Low Load Mechanical Behavior of Skeletal Muscle: An Improved Understanding of Injury and Healing
骨骼肌原位低负荷机械行为:加深对损伤和愈合的理解
  • 批准号:
    0201783
  • 财政年份:
    2002
  • 资助金额:
    $ 43.83万
  • 项目类别:
    Continuing Grant
UNDERSTANDING SPINAL MOTION SEGMENT MECHANICAL BEHAVIOR
了解脊柱运动节段的机械行为
  • 批准号:
    2292429
  • 财政年份:
    1994
  • 资助金额:
    $ 43.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了