SusChEM: Stochastic Bethe-Salpeter Approach to Excited States in Large Molecules and Nanocrystals
SusChEM:大分子和纳米晶体激发态的随机 Bethe-Salpeter 方法
基本信息
- 批准号:1465064
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-15 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Professor Eran Rabani of the University of California, Berkeley is supported by the Chemical Theory, Models and Computational Methods and the Macromolecular, Supramolecular and Nanochemistry programs in the Chemistry Division (CHE) and the Condensed Matter and Materials Theory program in the Division of Materials Research (DMR)to develop theoretical and computational approaches to study electronically excited states in large molecular and nanoscale systems. There is significant interest in the development of new nanostructured materials such as nanocrystals, nanorods and their composites for light harvesting and energy storage devices, with the ultimate goal of fabricating lightweight and high efficiency devices. However, the lack of predictive tools to describe the physical properties of such systems has been one of the major bottlenecks in the design of nanomaterials with tailored properties. Rabani and his coworkers seek to address this problem by working toward an accurate description of excited electronic states, so-called "electron-hole excitations" in extended systems a rather challenging theoretical/computational task. It is therefore the goal of this research to develop a means to describe the excitonic level alignment and the absorption spectrum with computational complexity that is scalable to systems of experimental relevance at the nanometer scale. This is the major goal of the present program. Graduate students and postdoctoral research associates are involved in this research and are being trained in cutting edge theoretical and computational methods.To reduce the computational complexity of describing optically excited states, Rabani and his research group are developing a real-time formalism based on the Bethe-Salpeter equation, one the most accurate methods to describe excited states in extended systems. The Bethe-Salpeter approach is rather popular in condensed matter physics but has been underused in chemistry. The real-time formalism allows them to reduce the computational scaling to cubic, which is a significant improvement but not sufficient for extended systems. Thus, to further reduce the computational cost, efforts will be made to develop a stochastic formulation based on the time-dependent description of the Bethe-Salpeter approach, leading to quadratic scaling with system size. To test the accuracy of the new formalism, predictions made by the time-dependent stochastic Bethe-Salpeter approach will be compared with experimental measured quantities on nanocrystals, nanorods, and seeded nanorods of varying dimensions. If successful, these efforts will make the Bethe-Salpeter approach a handy tool to describe excited states in extended molecular systems in much the same way that time-dependent density functional theory is a handy tool for excited states in small molecular systems.
加州大学伯克利分校的Eran Rabani教授得到化学学部(CHE)的化学理论、模型和计算方法以及大分子、超分子和纳米化学项目和材料研究学部(DMR)的凝聚态和材料理论项目的支持,开发理论和计算方法来研究大分子和纳米级系统的电子激发态。人们对新型纳米结构材料(如纳米晶体、纳米棒及其复合材料)的开发非常感兴趣,这些材料用于光收集和能量存储设备,其最终目标是制造轻质、高效的设备。然而,缺乏预测工具来描述这些系统的物理性质一直是设计具有定制性质的纳米材料的主要瓶颈之一。Rabani和他的同事试图通过精确描述激发态来解决这个问题,在扩展系统中所谓的“电子-空穴激发”是一个相当具有挑战性的理论/计算任务。因此,本研究的目标是开发一种方法来描述激子水平排列和吸收光谱的计算复杂性,可扩展到纳米尺度的实验相关系统。这是本计划的主要目标。研究生和博士后研究人员参与了这项研究,并正在接受前沿理论和计算方法的培训。为了减少描述光学激发态的计算复杂性,Rabani和他的研究小组正在开发一种基于Bethe-Salpeter方程的实时形式,Bethe-Salpeter方程是描述扩展系统中激发态的最准确方法之一。Bethe-Salpeter方法在凝聚态物理中相当流行,但在化学中却没有得到充分的应用。实时形式化允许他们将计算尺度降低到立方,这是一个显着的改进,但对于扩展系统来说还不够。因此,为了进一步降低计算成本,将努力开发基于Bethe-Salpeter方法的时间相关描述的随机公式,从而导致系统大小的二次缩放。为了测试新形式的准确性,将用随时间变化的随机Bethe-Salpeter方法做出的预测与不同尺寸的纳米晶体、纳米棒和播种纳米棒的实验测量量进行比较。如果成功,这些努力将使Bethe-Salpeter方法成为描述扩展分子系统中激发态的便利工具,就像依赖时间的密度泛函理论是描述小分子系统中激发态的便利工具一样。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eran Rabani其他文献
Exciton-phonon coupling and phonon-assisted exciton relaxation dynamics in In1-xGaxP quantum dots
In1-xGaxP 量子点中的激子-声子耦合和声子辅助激子弛豫动力学
- DOI:
10.1038/s41467-025-58800-8 - 发表时间:
2025-05-13 - 期刊:
- 影响因子:15.700
- 作者:
Beiye C. Li;Kailai Lin;Ping-Jui E. Wu;Aritrajit Gupta;Kaiyue Peng;Siddhartha Sohoni;Justin C. Ondry;Zirui Zhou;Caitlin C. Bellora;Young Jay Ryu;Stella Chariton;David J. Gosztola;Vitali B. Prakapenka;Richard D. Schaller;Dmitri V. Talapin;Eran Rabani;Gregory S. Engel - 通讯作者:
Gregory S. Engel
Non-monotonic size-dependent exciton radiative lifetime in CsPbBr3 nanocrystals
CsPbBr3 纳米晶体中与尺寸相关的非单调激子辐射寿命
- DOI:
10.1038/s41467-025-60848-5 - 发表时间:
2025-07-11 - 期刊:
- 影响因子:15.700
- 作者:
Abdullah S. Abbas;Daniel Chabeda;Daniel Weinberg;David T. Limmer;Eran Rabani;A. Paul Alivisatos - 通讯作者:
A. Paul Alivisatos
Eran Rabani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eran Rabani', 18)}}的其他基金
NSF/DMR-BSF: Artificial Semiconductor Nanocrystal Molecules for Charge Carrier Separation
NSF/DMR-BSF:用于电荷载流子分离的人造半导体纳米晶体分子
- 批准号:
2026741 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Tackling Disorder and Ensemble Broadening in Materials Made of Semiconductor Nanostructures
DMREF:合作研究:解决半导体纳米结构材料中的无序和系综展宽
- 批准号:
1629361 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
- 批准号:
EP/Y027795/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
- 批准号:
24K06758 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
- 批准号:
2337427 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
- 批准号:
EP/X041239/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
- 批准号:
EP/Y033248/1 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Research Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
- 批准号:
2339240 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
- 批准号:
2412025 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant