Structure and Electronic Anomalies of Amorphous Chalcogenides

无定形硫属化物的结构和电子异常

基本信息

  • 批准号:
    1465125
  • 负责人:
  • 金额:
    $ 43.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

Vassiliy Lubchenko of the University of Houston is supported by an award from the Chemical Theory, Models and Computational Methods program in the Chemistry division to develop a theoretical and computational approach to studying an important class of inorganic solids, called the "chalcogenides," that contain elements from groups XVI (sulfur, selenium, tellurium), XV (phosphorus, arsenic, antimony, bismuth), and XIV (germanium). The ability of these solids to switch readily between ordered crystalline and amorphous ("glassy") forms allows one to tune the optical and electronic properties of these materials in an efficient way. This property makes the chalcogenides prime candidates for applications in optical drives, next generation computer memory and displays, smart optics, and novel computer architectures Amorphous chalcogenides are a special type of disordered solids called "glasses," which are ordinarily made by rapidly cooling a liquid, usually below its melting point One can convert a chalcogenide alloy between the glass and ordered crystalline form by first melting the material and, then, cooling the melt at a specified rate. Slow cooling yields the crystal, fast cooling yields the glass. The present study is establishing detailed connections between the molecular motions underlying the glass transition and quantum-chemical interactions in the chalcogenide alloys. Direct molecular modeling of the glass transition is difficult and is part of the greater challenge of predicting the structure of complex inorganic solids and designing materials with tailored properties. The study is exploiting the similarity of the interplay between distinct chemical interactions in the chalcogenides and the behavior of a well-defined model of mathematical physics to make the problem tractable. At the center of the broader impact activities is training of graduate, undergraduate, and, in particular, high school students. A strategy is in place to ensure the participating high school and undergraduate students complete meaningful subprojects that will contribute to peer-reviewed publications.The microscopic hypothesis of the proposed work is that the glass-forming ability of the chalcogenide alloys stems from a competition between distinct types of chemical bonding: covalent, multicenter, and secondary. The resulting complex interplay of interactions is captured by a classic model of statistical physics, viz., the 64-vertex model, which is being implemented. The most important outputs of the calculation are the structure and the configurational entropy of amorphous chalcogenides. The configurational entropy determines the complexity of the free energy landscape of the alloys and their glass-forming ability. To back up these calculations, a novel procedure is being implemented for generating dense glassy structures for particles with distorted-octahedral bonding typical of the chalcogenides. An additional coarse-graining description is being implemented with the help of a recently developed 6-component spin model based on the theory of elasticity of structurally-degenerate solids.
休斯顿大学的Vassiliy Lubchenko获得了化学系化学理论,模型和计算方法项目的奖项,以开发一种理论和计算方法来研究一类重要的无机固体,称为“硫属化物”,含有第XVI族元素(硫,硒,碲),XV族元素(磷,砷,锑,铋)和XIV族元素(锗)。 这些固体在有序晶体和非晶(“玻璃态”)形式之间容易切换的能力允许人们以有效的方式调节这些材料的光学和电子性质。 这种性质使得硫属化物在光学驱动器、下一代计算机存储器和显示器、智能光学和新型计算机架构中的应用成为主要候选者。非晶硫属化物是一种特殊类型的无序固体,称为“玻璃”,通常通过快速冷却液体(通常低于其熔点)来制备 人们可以通过首先熔化材料,然后以特定速率冷却熔体,在玻璃和有序晶体形式之间转换硫属化物合金。 缓慢冷却产生晶体,快速冷却产生玻璃。 目前的研究是建立详细的分子运动之间的联系,玻璃化转变和硫系合金中的量子化学相互作用。 玻璃化转变的直接分子建模是困难的,并且是预测复杂无机固体的结构和设计具有定制特性的材料的更大挑战的一部分。 这项研究利用了硫属化物中不同化学相互作用之间的相互作用的相似性,以及一个定义明确的数学物理模型的行为,使问题变得易于处理。 在更广泛的影响活动的中心是研究生,本科生,特别是高中生的培训。 一个战略是到位,以确保参与高中和本科生完成有意义的子项目,将有助于同行评议publication.The微观假设的拟议工作是玻璃形成能力的硫属合金源于不同类型的化学键之间的竞争:共价键,多中心,和二级。 由此产生的相互作用的复杂相互作用是由一个经典的统计物理模型,即,64顶点模型,正在实施中。 计算的最重要的输出是非晶硫属化物的结构和组态熵。 组态熵决定了合金自由能谱的复杂性及其玻璃形成能力。 为了支持这些计算,正在实施一种新的程序,用于产生致密的玻璃结构的颗粒与扭曲的八面体键合典型的硫属化物。 一个额外的粗粒化描述正在实施的帮助下,最近开发的6个组成部分的自旋模型的基础上,结构退化固体的弹性理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vassiliy Lubchenko其他文献

Vassiliy Lubchenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vassiliy Lubchenko', 18)}}的其他基金

Dynamic Charge-Density Waves and Electronic Anomalies of Inorganic Solids
无机固体的动态电荷密度波和电子异常
  • 批准号:
    1956389
  • 财政年份:
    2020
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Continuing Grant
Opportunistic complexation and mesoscopic aggregates in protein solutions
蛋白质溶液中的机会络合和介观聚集体
  • 批准号:
    1518204
  • 财政年份:
    2015
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Standard Grant
Kinetically-stabilized mesoscopic protein aggregates
动力学稳定的介观蛋白质聚集体
  • 批准号:
    1244568
  • 财政年份:
    2012
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Continuing Grant
CAREER: Structure and Electronic Anomalies of Vitreous Matter
职业:玻璃体的结构和电子异常
  • 批准号:
    0956127
  • 财政年份:
    2010
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Standard Grant
Mesoscopic Aggregation of Folded Proteins
折叠蛋白质的介观聚集
  • 批准号:
    0843726
  • 财政年份:
    2009
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
  • 批准号:
    2338792
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Continuing Grant
Conference: The Electronic Materials Conference
会议:电子材料会议
  • 批准号:
    2414428
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
  • 批准号:
    2343806
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Standard Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
  • 批准号:
    2403804
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Standard Grant
Understanding the electronic structure landscape in wide band gap metal halide perovskites
了解宽带隙金属卤化物钙钛矿的电子结构景观
  • 批准号:
    EP/X039285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Research Grant
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    EU-Funded
Wearable Electronic Skins for Biomedical Application
用于生物医学应用的可穿戴电子皮肤
  • 批准号:
    2906949
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Studentship
Conference: Electronic Structure Workshop (ES24)
会议:电子结构研讨会(ES24)
  • 批准号:
    2414597
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Standard Grant
Understanding the synthesis and electronic behavior of beta tungsten thin film materials
了解β钨薄膜材料的合成和电子行为
  • 批准号:
    23K20274
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of an Ultra-sensitive Drumhead together with interactive Learning Apps for Electronic Drums.
开发超灵敏鼓皮以及电子鼓的交互式学习应用程序。
  • 批准号:
    10091335
  • 财政年份:
    2024
  • 资助金额:
    $ 43.2万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了