Development and Testing of a Global Quasi-3-D Multi-scale Modeling Framework

全球准三维多尺度建模框架的开发和测试

基本信息

  • 批准号:
    1500187
  • 负责人:
  • 金额:
    $ 65.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-02-01 至 2020-01-31
  • 项目状态:
    已结题

项目摘要

Global atmospheric general circulation models (GCMs) used for weather prediction and climate modeling typically divide the atmosphere into a grid, with a single value for atmospheric variables like temperature and pressure in each grid box. As the grid boxes are typically tens of kilometers wide or more it is not possible to represent individual clouds, or even cloud systems, in such models. Instead the net effect of clouds and other small-scale processes on the larger scale atmospheric flow must be approximated through the use of parameterizations, and this representation is a key source of errors in weather forecasts and uncertainty in future climate change projections. Alternative methods of representing clouds and their interactions with large-scale atmospheric conditions are therefore desirable for forecasting the weather and providing decision support to stakeholders concerned with the impacts of climate variability and change.This award supports the development and testing of a novel atmospheric model, the global quasi-3D Multiscale Modeling Framework (Q3D MMF). The model is an extension of the Super-Parameterizaton (SP) scheme developed by the Center for Multiscale Modeling of Atmospheric Processes (CMMAP, see AGS-0425247), the Science and Technology Center (STC). The SP MMF consists of a global atmospheric general circulation model (GCM) in which the parameterizations for cloud processes and other subgrid-scale processes in each grid column are replaced by a high-resolution cloud resolving model (CRM). CMMAP has already produced an SP version of the Community Atmosphere Model (CAM, or SP-CAM for the SP version). But SP-CAM uses a two-dimensional (2D) CRM in which the domain is a vertical plane oriented in either the zonal (x-) or meridional (y-) direction and periodic boundary conditions in the x- or y-direction. These restrictions are imposed to reduce computational cost, and to relax them entirely would require a global CRM (GCRM) which is too computationally expensive for most purposes. Alternatively, the Q3D MMF partially relaxes the conditions by using CRMs with domains that are narrow channels with only a few gridpoints in the cross-channel domain. The channels connect with their counterparts in neighboring cells of the GCM, thus avoiding periodic boundary conditions at either end of the channel. Moreover, each grid cell of the GCM has two such channel-shaped CRMs, oriented in the zonal and meridional direction, to allow for directional anisotropy due to surface topography and other factors.The zonal and meridional CRM channels thus extend around the globe without interruption and intersect each other at adjacent grid cells of the parent GCM. The channel models do not interact at the intersections, as that would result in unphysical behavior associated with a cross-shaped domain. The separate CRM channels communicate only with the GCM, receiving background information from the GCM and supplying the GCM with the outputs expected from standard grid column parameterizations found in conventional GCMs. Work here is an extension of previous work at CMMAP, including the development of a simpler version in which the CRMs are embedded in a regional model over an idealized tropical domain. Work under this award includes several tasks required to develop a global model from this prototype, including inclusion of topography and conversion from a periodic Cartesian domain to a realistic GCM domain.The work has broader impacts for the research community because it develops a new atmospheric model which is applicable to a range of research areas related to the impact of clouds on large-scale weather and climate phenomena. To ensure accessibility to the broader research community, the Q3D MMF will be constructed using a version of CAM (the spectral element version) as the GCM component. CAM is freely available, well supported and documented, and widely used, thereby maximizing accessibility. In addition, CAM is the atmospheric component model of the Community Earth System Model, which is used for projections of future climate change that inform decision makers concerned with climate impacts on natural and human systems.
用于天气预测和气候建模的全球大气环流模型(GCM)通常将大气划分为网格,每个网格框中的温度和压力等大气变量具有单一值。 由于网格框通常有几十公里宽或更宽,因此在这种模型中不可能代表单个云,甚至是云系统。 相反,云和其他小尺度过程对大尺度大气流动的净影响必须通过使用参数化来近似,这种表示是天气预报误差和未来气候变化预测不确定性的主要来源。因此,代表云及其与大尺度大气条件相互作用的替代方法对于天气预报和为关注气候变率和变化影响的利益相关者提供决策支持是可取的。该奖项支持开发和测试一种新的大气模型,即全球准三维多尺度建模框架(Q3 D MMF)。该模式是由科学技术中心(STC)的大气过程多尺度模拟中心(CMMAP,见AGS-0425247)开发的超参数化(SP)方案的扩展。 SPMMF由一个全球大气环流模式(GCM)组成,其中每个网格列中的云过程和其他次网格尺度过程的参数化被高分辨率云解析模式(CRM)取代。CMMAP已经制作了一个SP版本的社区大气模型(CAM,或SP版本的SP-CAM)。但是SP-CAM使用二维(2D)CRM,其中域是在纬向(x-)或纬向(y-)方向上定向的垂直平面,并且在x-或y-方向上具有周期性边界条件。施加这些限制是为了降低计算成本,并且完全放松它们将需要全局CRM(GCRM),这对于大多数目的来说在计算上太昂贵。可替代地,Q3 D MMF通过使用具有窄通道的域的CRM来部分地放松条件,其中窄通道在交叉通道域中仅具有几个网格点。通道与GCM的相邻单元中的对应物连接,从而避免通道两端的周期性边界条件。此外,GCM的每个网格单元都有两个这样的通道形状的CRM,定向在纬向和纬向方向上,以考虑由于表面地形和其他因素引起的方向各向异性。纬向和纬向CRM通道因此围绕地球仪延伸而不中断,并在母GCM的相邻网格单元处彼此相交。通道模型在交叉点处不相互作用,因为这将导致与十字形域相关联的非物理行为。单独的CRM通道仅与GCM通信,从GCM接收背景信息,并向GCM提供常规GCM中标准网格列参数化的预期输出。 这里的工作是CMMAP之前工作的扩展,包括开发一个更简单的版本,其中CRM嵌入到理想热带域的区域模型中。 该奖项下的工作包括从该原型开发全球模式所需的几项任务,包括包括地形和从周期性笛卡尔域到现实的GCM域的转换。这项工作对研究界有更广泛的影响,因为它开发了一个新的大气模式,适用于与云对大尺度天气和气候现象的影响有关的一系列研究领域。 为了确保更广泛的研究社区的可访问性,Q3 D MMF将使用CAM版本(光谱元素版本)作为GCM组件来构建。 CAM免费提供、得到良好的支持和记录,并且得到广泛使用,从而最大限度地提高了可访问性。 此外,CAM是共同体地球系统模型的大气组成部分模型,用于预测未来气候变化,为关注气候对自然和人类系统影响的决策者提供信息。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Greener Earth Model
绿色地球模型
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Loft, Richard
  • 通讯作者:
    Loft, Richard
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOON-HEE JUNG其他文献

JOON-HEE JUNG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Improving the granularity and precision of HIV testing and treatment services estimates in sub-Saharan Africa, to identify and resolve socio-demographic and spatial inequalities in the global HIV response
提高撒哈拉以南非洲艾滋病毒检测和治疗服务估计的粒度和精确度,以识别和解决全球艾滋病毒应对中的社会人口和空间不平等问题
  • 批准号:
    473872
  • 财政年份:
    2022
  • 资助金额:
    $ 65.67万
  • 项目类别:
    Fellowship Programs
Geological Testing of Global Warming Models on Venus
金星上全球变暖模型的地质测试
  • 批准号:
    RGPIN-2020-06408
  • 财政年份:
    2022
  • 资助金额:
    $ 65.67万
  • 项目类别:
    Discovery Grants Program - Individual
Implementing and testing new bounding methods for use in global optimization
实现和测试用于全局优化的新边界方法
  • 批准号:
    573946-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 65.67万
  • 项目类别:
    University Undergraduate Student Research Awards
Causal testing of the role of a place code for global-scale visual features in primate V1 using patterned optogenetics
使用图案光遗传学对灵长类动物 V1 中全球范围视觉特征的位置代码的作用进行因果测试
  • 批准号:
    10513805
  • 财政年份:
    2021
  • 资助金额:
    $ 65.67万
  • 项目类别:
Causal testing of the role of a place code for global-scale visual features in primate V1 using patterned optogenetics
使用图案光遗传学对灵长类动物 V1 中全球范围视觉特征的位置代码的作用进行因果测试
  • 批准号:
    10557134
  • 财政年份:
    2021
  • 资助金额:
    $ 65.67万
  • 项目类别:
Causal testing of the role of a place code for global-scale visual features in primate V1 using patterned optogenetics
使用图案光遗传学对灵长类动物 V1 中全球范围视觉特征的位置代码的作用进行因果测试
  • 批准号:
    10157768
  • 财政年份:
    2021
  • 资助金额:
    $ 65.67万
  • 项目类别:
Geological Testing of Global Warming Models on Venus
金星上全球变暖模型的地质测试
  • 批准号:
    RGPIN-2020-06408
  • 财政年份:
    2021
  • 资助金额:
    $ 65.67万
  • 项目类别:
    Discovery Grants Program - Individual
Stress-testing global infrastructure networks to synchronous flood events
对全球基础设施网络进行压力测试以同步洪水事件
  • 批准号:
    2444522
  • 财政年份:
    2020
  • 资助金额:
    $ 65.67万
  • 项目类别:
    Studentship
IRNC: Core Improvement: AtlanticWave-SDX: A Distributed Experimental SDX Supporting Research, Experimental Deployments, and Interoperability Testing on Global Scales
IRNC:核心改进:AtlanticWave-SDX:分布式实验 SDX 支持全球范围内的研究、实验部署和互操作性测试
  • 批准号:
    2029278
  • 财政年份:
    2020
  • 资助金额:
    $ 65.67万
  • 项目类别:
    Continuing Grant
Geological Testing of Global Warming Models on Venus
金星上全球变暖模型的地质测试
  • 批准号:
    RGPIN-2020-06408
  • 财政年份:
    2020
  • 资助金额:
    $ 65.67万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了