Collaborative Research: Plasma Physics At Small Coulomb Logarithms

合作研究:小库仑对数下的等离子体物理

基本信息

  • 批准号:
    1500376
  • 负责人:
  • 金额:
    $ 38.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

This collaborative research project will advance fundamental understanding of how groups of high speed ions crash into and interact with each other. One can measure just how violent a collision is by comparing the energy of the crashing high-speed ions with the electrical force between them. The most violent ion collisions, the ones that are most important both for extending our scientific knowledge and for developing technological applications, are very difficult to measure or calculate. They occur in extremely hot and very dense gases of charged particles called plasmas. In this project, new ideas will be used to measure and understand these collisions. Lasers will be used to slow atoms from speeds of nearly 1000 meters per second to a crawl of about an inch per second; and then to turn these slow atoms into ions. Additional lasers will then be used to measure how these ions crash into each other. The ions in these slow-motion collisions have the same amount of crash energy compared to the ion-ion electrical force, which means that the collision results can be directly compared to similar collisions at any energy. This project will use state-of-the-art large-scale computer simulations to make movies of the ion-ion collisions and compare these to the experimental measurements. When the computations are proven to be sufficiently accurate, approximations will be gradually introduced and tested in order to speed up the computations. These results will then set the standard for accurate and fast computations of ion collisions in plasmas. Several students will work on this project: Undergraduate and graduate students and post-doctoral scientists will work closely with expert scientists at Willamette University (Oregon), Brigham Young University (Utah), and the New Mexico Consortium (New Mexico).The proposed collaborative research project will investigate energy relaxation in a system in which the value of the Coulomb logarithm is small. This is typical of high-energy-density systems, where violent small-impact-parameter collisions result in large particle deflections. Understanding these collisions is a priority for advancing fundamental plasma physics and for accurately modeling small impact parameter collisions in high energy density plasmas. The proposed work will generate high quality data in plasma regimes where traditional diagnostics are limited. The proposed work will combine data from a new dual-species ultracold neutral plasma experiment and state-of-the-art simulations to study temperature equilibration in moderately coupled plasmas, in which classic plasma assumptions are invalid. The dual-species plasma will be generated by resonantly photo-ionizing laser-cooled Yb and Ca atoms in the same magneto-optical trap. Laser-induced fluorescence measurements will be used to measure the time-evolving ion velocity distribution for each ion species simultaneously. By delaying the ionization of one species relative to the other, the time scale for full energy relaxation can be determined. State-of-the-art molecular dynamics simulations will be performed that match the density, stoichiometry, and geometry of the experiments. The calculations will provide a first-principles description of collision processes by directly integrating many-body trajectories. Arbitrarily complicated orbits will be computed self-consistently with dynamical many-body screening. The many-body phase dynamics will be inverted to yield highly accurate effective Coulomb logarithms, providing important information back to the high energy density community. This project will support one graduate student per year for three years at BYU, two undergraduate students per year at BYU, two undergraduate students per year at WU, and one post-doc per year for two years at NMC.
这个合作研究项目将推进对高速离子群如何相互碰撞和相互作用的基本理解。人们可以通过比较高速离子碰撞的能量和它们之间的电力来测量碰撞的猛烈程度。最猛烈的离子碰撞,对于扩展我们的科学知识和开发技术应用都是最重要的,是非常难以测量或计算的。它们发生在极热和非常稠密的带电粒子气体中,称为等离子体。在这个项目中,新的想法将被用来测量和理解这些碰撞。激光将用于将原子的速度从每秒近1000米减慢到每秒约1英寸的爬行;然后将这些缓慢的原子变成离子。然后将使用额外的激光来测量这些离子如何相互碰撞。这些慢动作碰撞中的离子与离子-离子电力相比具有相同的碰撞能量,这意味着碰撞结果可以直接与任何能量下的类似碰撞进行比较。该项目将使用最先进的大规模计算机模拟来制作离子-离子碰撞的电影,并将其与实验测量结果进行比较。当计算被证明足够准确时,将逐步引入和测试近似值,以加快计算速度。这些结果将为等离子体中离子碰撞的准确和快速计算设定标准。几名学生将从事这个项目:本科生、研究生和博士后科学家将与威拉米特大学(俄勒冈州)、杨百翰大学(犹他州)和新墨西哥州联盟(新墨西哥州)的专家科学家密切合作。拟议的合作研究项目将调查库仑对数值很小的系统中的能量弛豫。这是典型的高能量密度系统,其中剧烈的小冲击参数碰撞导致大的粒子偏转。了解这些碰撞是推进基本等离子体物理和精确建模小的影响参数碰撞在高能量密度等离子体的优先事项。拟议的工作将产生高质量的数据等离子体制度,传统的诊断是有限的。拟议的工作将结合联合收割机的数据,从一个新的双物种超冷中性等离子体实验和国家的最先进的模拟研究温度平衡在适度耦合等离子体,其中经典的等离子体假设是无效的。激光冷却的Yb和Ca原子在同一磁光阱中共振光电离产生双粒子等离子体。激光诱导荧光测量将用于同时测量每个离子种类的随时间变化的离子速度分布。通过延迟一种物质相对于另一种物质的电离,可以确定全能量弛豫的时间尺度。将进行最先进的分子动力学模拟,以匹配实验的密度、化学计量和几何形状。这些计算将通过直接整合多体轨迹提供碰撞过程的第一原理描述。复杂的轨道将与动力学多体屏蔽计算自洽。多体相动力学将被反演,以产生高度精确的有效库仑图,为高能量密度社区提供重要信息。该项目将支持杨百翰大学每年一名研究生,为期三年,杨百翰大学每年两名本科生,吴大学每年两名本科生,以及NMC每年一名博士后,为期两年。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Bergeson其他文献

Scott Bergeson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott Bergeson', 18)}}的其他基金

Ultracold Neutral Plasmas as High Energy Density Plasma Simulators
超冷中性等离子体作为高能量密度等离子体模拟器
  • 批准号:
    2009999
  • 财政年份:
    2020
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
Laser Cooling Ions in An Ultracold Neutral Plasma
超冷中性等离子体中的激光冷却离子
  • 批准号:
    1404488
  • 财政年份:
    2014
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
Dynamics of Ultracold Neutral Plasmas in the First 100 NS
前 100 NS 内超冷中性等离子体的动力学
  • 批准号:
    0969856
  • 财政年份:
    2010
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
Non-equilibrium dynamics of ultracold neutral plasmas
超冷中性等离子体的非平衡动力学
  • 批准号:
    0601699
  • 财政年份:
    2006
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
Highly Excited Ultracold Atoms
高激发超冷原子
  • 批准号:
    9985027
  • 财政年份:
    2000
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ECLIPSE: Physical and Chemical Insights into Particle-Plasma Interactions in Dusty Plasma using Optical Trapping and Multi-Fold Laser Diagnostics
合作研究:ECLIPSE:使用光学捕获和多重激光诊断对尘埃等离子体中的粒子-等离子体相互作用进行物理和化学洞察
  • 批准号:
    2308948
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
  • 批准号:
    2403970
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318495
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318493
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ECLIPSE: Physical and Chemical Insights into Particle-Plasma Interactions in Dusty Plasma using Optical Trapping and Multi-Fold Laser Diagnostics
合作研究:ECLIPSE:使用光学捕获和多重激光诊断对尘埃等离子体中的粒子-等离子体相互作用进行物理和化学洞察
  • 批准号:
    2308947
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
  • 批准号:
    2318494
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
ECLIPSE/Collaborative Research: Unravelling the Coupled Physics of Piezoelectric and Plasma Behavior in Piezoelectric Stimulated Plasma Sources
ECLIPSE/合作研究:揭示压电受激等离子体源中压电和等离子体行为的耦合物理
  • 批准号:
    2206406
  • 财政年份:
    2022
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Multimessenger Plasma Physics Center (MPPC)
合作研究:WoU-MMA:多信使等离子体物理中心(MPPC)
  • 批准号:
    2206607
  • 财政年份:
    2022
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Novel Plasma Physics of Trapped Antimatter
合作研究:捕获反物质的新型等离子体物理学
  • 批准号:
    2205620
  • 财政年份:
    2022
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: WoU-MMA: Multimessenger Plasma Physics Center (MPPC)
合作研究:WoU-MMA:多信使等离子体物理中心(MPPC)
  • 批准号:
    2206608
  • 财政年份:
    2022
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了