Laser Cooling Ions in An Ultracold Neutral Plasma
超冷中性等离子体中的激光冷却离子
基本信息
- 批准号:1404488
- 负责人:
- 金额:$ 14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project explores the possibility of using laser light to reduce the temperature of a gas composed of electrons and charged atoms (a so-called "neutral plasma"). The charged atoms (ions) and electrons exert electrical forces on each other. In ordinary plasmas, the ions and electrons move quickly and only push on each other briefly as they rapidly pass one another. When the plasma temperature falls, the amount of time charged particles spend near each other increases and the influence of the electrical force becomes more pronounced. At low enough temperatures, the gaseous plasma assumes characteristics of dense liquids. Interestingly, fusion-class plasmas (extremely hot plasmas that are being studied for their potential as an advanced source of electrical power production) also behave as dense liquids. This happens not because of low temperature, but because of high density. The degree to which a plasma behaves as a dense liquid is given by a mathematical quotient of the plasma density divided by the temperature. In fusion plasmas, this quotient is large because of high density. In the proposed experiments, this quotient is large because of low temperature. This makes it possible for the proposed experiments to study the physics of fusion-class plasmas using a model system at low temperatures with exquisite control over experimental conditions. Activities funded by this proposal will explore the limits of low temperatures in ultracold plasmas. Brigham Young University, where this research will be carried out, sponsors one of the largest undergraduate physics programs in the nation. Because several undergraduate students will be involved in this work, NSF funding will directly influence their scientific education and preparation.The strong coupling parameter, gamma, is limited in ultracold neutral plasmas by the process of disorder-induced heating (DIH). The cold ions are created by photo-ionizing laser-cooled Ca atoms in a magneto-optical trap. Although cold, these ions have an overwhelmingly large electrical potential energy. The ions are accelerated as they move to minimize their potential energy. The Ca ion temperature increases from a few mK to a few kelvin, a factor of 1000 in less than 100 ns. Kinetic and thermodynamic plasma properties scale with gamma. Unfortunately, DIH limits gamma to be less than 2 in neutral plasmas. The goal of this research, therefore, is to reduce the ion temperature in ultracold neutral plasmas using laser cooling, increasing the value of gamma. This proposal builds on extensive previous work by Dr. Bergeson in this field. Successful realization of this goal will generate a platform from which high-gamma experiments can be performed in the future. The ions will be cooled using a powerful frequency-broadened laser at 397 nm. The optical leak in the cooling transition to the 3d doublet D (J=3/2) level will be plugged using lasers at 850 and 854 nm. Repumping coherences will be avoided by alternately switching these near-infrared laser intensities. After a specified cooling time, the cooling light will be switched off and the ion temperature will be probed by scanning a low-intensity laser across the 397 nm absorption line profile, collecting the laser-induced fluorescence, and fitting the measured lineshape to a Voigt profile. One challenge in this project is using optical forces to overcome the electron-driven radial plasma expansion. Simulations suggest that this is possible. Another challenge will be to scatter photons from the plasma ions fast enough that the ions can be slowed and confined before velocity-changing collisions redistribute the ion kinetic energy to untrapped portions of the ensemble. Numerical estimates suggest that this should be possible at low plasma densities.
该项目探索了利用激光降低由电子和带电原子组成的气体(即所谓的“中性等离子体”)温度的可能性。带电的原子(离子)和电子相互施加电动力。在普通等离子体中,离子和电子移动很快,当它们快速通过彼此时,只会短暂地相互推动。当等离子体温度下降时,带电粒子相互靠近的时间增加,电动力的影响变得更加明显。在足够低的温度下,气态等离子体呈现出稠密液体的特征。有趣的是,聚变级等离子体(极热的等离子体正在被研究,因为它们作为一种先进的电力生产来源的潜力正在被研究)也是稠密的液体。这不是因为温度低,而是因为密度高。等离子体表现为稠密液体的程度由等离子体密度除以温度的数学商给出。在聚变等离子体中,由于密度高,这个商很大。在所提出的实验中,由于温度较低,这一商很大。这使得拟议的实验有可能在低温下使用模型系统研究聚变级等离子体的物理,并对实验条件进行精确控制。由该提案资助的活动将探索超冷等离子体的低温极限。这项研究将在杨百翰大学进行,该大学赞助了全国最大的本科生物理项目之一。由于这项工作将涉及几个本科生,NSF的资助将直接影响他们的科学教育和准备工作。由于无序感应加热(DIH)过程,强耦合参数伽马在超冷中性等离子体中受到限制。冷离子是由磁光陷阱中的光致电离激光冷却的钙原子产生的。虽然很冷,但这些离子具有压倒性的巨大电势能。当离子移动以使其势能最小化时,它们被加速。在不到100 ns的时间内,钙离子温度从几mK增加到几开尔文,增加了1000倍。等离子体的动力学和热力学性质与伽马有关。不幸的是,DIH将中性等离子体中的伽马值限制在2以下。因此,这项研究的目标是利用激光冷却来降低超冷中性等离子体中的离子温度,增加伽马值。这项提议建立在Bergeson博士之前在这一领域所做的大量工作的基础上。这一目标的成功实现将产生一个平台,未来可以在这个平台上进行高伽马实验。这些离子将使用397 nm的强大展频激光进行冷却。在冷却到3D双重态D(J=3/2)能级的过程中,将使用850和854 nm的激光来堵住光学泄漏。通过交替切换这些近红外激光强度,可以避免重泵相干性。在指定的冷却时间后,将关闭冷却光,并通过扫描穿过397 nm吸收线形的低强度激光,收集激光诱导的荧光,并将测量的线形与Voigt线形拟合,来探测离子温度。这个项目中的一个挑战是使用光学力来克服电子驱动的径向等离子体膨胀。模拟表明,这是可能的。另一个挑战将是,如何以足够快的速度散射来自等离子体离子的光子,以便在速度变化的碰撞将离子动能重新分配到系综中未被捕获的部分之前,使离子能够被减慢和限制。数值估计表明,在低等离子体密度下,这应该是可能的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Bergeson其他文献
Scott Bergeson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Bergeson', 18)}}的其他基金
Ultracold Neutral Plasmas as High Energy Density Plasma Simulators
超冷中性等离子体作为高能量密度等离子体模拟器
- 批准号:
2009999 - 财政年份:2020
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Collaborative Research: Plasma Physics At Small Coulomb Logarithms
合作研究:小库仑对数下的等离子体物理
- 批准号:
1500376 - 财政年份:2015
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Dynamics of Ultracold Neutral Plasmas in the First 100 NS
前 100 NS 内超冷中性等离子体的动力学
- 批准号:
0969856 - 财政年份:2010
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Non-equilibrium dynamics of ultracold neutral plasmas
超冷中性等离子体的非平衡动力学
- 批准号:
0601699 - 财政年份:2006
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
相似海外基金
Ultracold Molecular Ions Prepared Via Sympathetic Cooling - A New Frontier for Quantum Interactions and Fundamental Physics
通过交感冷却制备超冷分子离子——量子相互作用和基础物理学的新领域
- 批准号:
1806288 - 财政年份:2018
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Sympathetic cooling of molecular ions
分子离子的交感冷却
- 批准号:
511685-2017 - 财政年份:2017
- 资助金额:
$ 14万 - 项目类别:
University Undergraduate Student Research Awards
Real-time observation of radiative cooling of isolated molecular ions in RICE
实时观测 RICE 中孤立分子离子的辐射冷却
- 批准号:
16K13859 - 财政年份:2016
- 资助金额:
$ 14万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Ground-state cooling of ions via sympathetic cooling with ultracold atomic gases
通过超冷原子气体交感冷却对离子进行基态冷却
- 批准号:
25800227 - 财政年份:2013
- 资助金额:
$ 14万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
CAREER: Ultracold Molecular Ions Prepared via Sympathetic Cooling - A New Frontier for Quantum Interactions and Fundamental Physics
职业:通过交感冷却制备超冷分子离子 - 量子相互作用和基础物理学的新前沿
- 批准号:
1255526 - 财政年份:2013
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
A Penning ion trap for sympathetic cooling of highly charged ions with electrons
用于高电荷离子与电子交感冷却的潘宁离子阱
- 批准号:
393475-2010 - 财政年份:2010
- 资助金额:
$ 14万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
A penning ion trap for sympathetic cooling of highly charged ions with electrons and cold protons
彭宁离子陷阱,用于与电子和冷质子交感冷却高电荷离子
- 批准号:
391020-2010 - 财政年份:2010
- 资助金额:
$ 14万 - 项目类别:
Subatomic Physics Envelope - Research Tools and Instruments
Sympathetic Cooling and Collisions of Atomic and Molecular Ions with Ultracold Atoms
原子和分子离子与超冷原子的交感冷却和碰撞
- 批准号:
0855570 - 财政年份:2009
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
A penning ion trap for sympathetic cooling of highly charged ions with electrons and cold protons
彭宁离子陷阱,用于与电子和冷质子交感冷却高电荷离子
- 批准号:
376086-2009 - 财政年份:2009
- 资助金额:
$ 14万 - 项目类别:
Subatomic Physics Envelope - Research Tools and Instruments














{{item.name}}会员




