Methods and Applications for Bilinear Operators

双线性算子的方法和应用

基本信息

  • 批准号:
    1500381
  • 负责人:
  • 金额:
    $ 17.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

The subject matter of this project belongs to the realm of bilinear Fourier analysis. After the pioneering work of Joseph Fourier in the first decades of the nineteenth century, one is now familiar with the process of decomposing a signal or function into its elementary frequency components (analysis) as well as with the reverse process of superposing individual frequency components to form a single signal (synthesis). Fourier analysis thus acts in a way similar to a prism, which allows one to see the individual color components of a beam of light. Along these lines, when two functions or signals coexist, their frequency components interact and this phenomenon plays a key role in the study of certain partial differential equations that arise, for instance, in optics, quantum mechanics, and fluid dynamics. In the field of bilinear Fourier analysis, tools are developed to model the behavior and interaction of two signals by decomposing each one into their constituent frequencies, separating each decomposition into low and high frequencies, and studying the interplay between the low-low, high-low, and high-high frequencies from each decomposition. This project will also contribute to the integration of research and education at the postdoctoral, graduate, and undergraduate levels, to advancing discovery, to forming human resources, and to developing academic curricula.Motivated by the study of commutators, bilinear Leibniz-type rules, paraproducts, and related topics in analysis and partial differential equations, the research activities of this project aim at developing methods in bilinear Fourier analysis to advance the theory of bilinear pseudo-differential operators and their applications. In particular, problems to be addressed include the description of the mapping properties, in the scales of Lebesgue, Besov, and Triebel-Lizorkin spaces, of bilinear pseudodifferential operators with symbols in certain critical classes.
本课题属于双线性傅立叶分析领域。在约瑟夫·傅立叶在19世纪最初几十年的开创性工作之后,人们现在熟悉将信号或函数分解成其基本频率分量的过程(分析)以及叠加各个频率分量以形成单个信号的逆过程(合成)。傅立叶分析的作用类似于棱镜,它允许人们看到光束的各个颜色分量。沿着这些路线,当两个功能或信号共存时,它们的频率分量相互作用,这种现象在研究某些偏微分方程中起着关键作用,例如,在光学,量子力学和流体动力学中。在双线性傅立叶分析领域,开发了一些工具来模拟两个信号的行为和相互作用,方法是将每个信号分解为它们的组成频率,将每个分解分为低频和高频,并研究每个分解的低频-低频、高频-低频和高频-高频之间的相互作用。该项目还将有助于博士后、研究生和本科生水平的研究和教育的整合,促进发现,培养人力资源,并开发学术课程。受双线性莱布尼兹型规则、副积以及分析和偏微分方程相关主题研究的启发,本计画的研究活动旨在发展双线性傅立叶分析的方法,以增进双线性伪微分算子的理论及其应用。特别是,要解决的问题包括描述具有某些临界类符号的双线性伪微分算子在Lebesgue、Besov和Triebel-Lizorkin空间尺度上的映射性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Virginia Naibo其他文献

Rellich identities for the Hilbert transform
希尔伯特变换的 Rellich 恒等式
  • DOI:
    10.1016/j.jfa.2023.110271
  • 发表时间:
    2024-02-15
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    María J. Carro;Virginia Naibo;María Soria-Carro
  • 通讯作者:
    María Soria-Carro
Commutators of Bilinear Pseudodifferential Operators and Lipschitz Functions
The Neumann problem in graph Lipschitz domains in the plane
  • DOI:
    10.1007/s00208-021-02347-8
  • 发表时间:
    2022-01-26
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    María Jesús Carro;Virginia Naibo;Carmen Ortiz-Caraballo
  • 通讯作者:
    Carmen Ortiz-Caraballo
Erratum: Weighted Fractional Leibniz-type Rules for Bilinear Multiplier Operators
  • DOI:
    10.1007/s11118-022-10060-7
  • 发表时间:
    2023-03-21
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Joshua Brummer;Virginia Naibo
  • 通讯作者:
    Virginia Naibo
Bessel capacities and rectangular differentiation in Besov spaces
  • DOI:
    10.1016/j.jmaa.2005.12.071
  • 发表时间:
    2006-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Virginia Naibo
  • 通讯作者:
    Virginia Naibo

Virginia Naibo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Virginia Naibo', 18)}}的其他基金

Bilinear Estimates in Analysis and Partial Differential Equations
分析和偏微分方程中的双线性估计
  • 批准号:
    2154113
  • 财政年份:
    2022
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Prairie Analysis Seminar 2020-2021
合作研究:草原分析研讨会2020-2021
  • 批准号:
    2034591
  • 财政年份:
    2020
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - The Global Behavior of Solutions to Critical Nonlinear Wave Equations
NSF/CBMS 数学科学区域会议 - 临界非线性波动方程解的全局行为
  • 批准号:
    1240744
  • 财政年份:
    2012
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Bilinear techniques in time-frequency and real analysis
时频和实分析中的双线性技术
  • 批准号:
    1101327
  • 财政年份:
    2011
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Studentship
CAREER: Verifying Security and Privacy of Distributed Applications
职业:验证分布式应用程序的安全性和隐私
  • 批准号:
    2338317
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant
IUCRC Phase III University of Colorado Boulder: Center for Membrane Applications, Science and Technology (MAST)
IUCRC 第三阶段科罗拉多大学博尔德分校:膜应用、科学与技术中心 (MAST)
  • 批准号:
    2310937
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
  • 批准号:
    2417064
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
  • 批准号:
    2349508
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CAS: Functionalization of Earth-Abundant, Molecular Group 4 Photosensitizers for Photochemical Applications
CAS:用于光化学应用的地球丰富的 4 分子族光敏剂的功能化
  • 批准号:
    2349986
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Flexible Thermoelectric Devices for Wearable Applications
适用于可穿戴应用的柔性热电器件
  • 批准号:
    2400221
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了