Bilinear Estimates in Analysis and Partial Differential Equations
分析和偏微分方程中的双线性估计
基本信息
- 批准号:2154113
- 负责人:
- 金额:$ 22.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project concerns bilinear Fourier analysis. Broadly speaking, Fourier analysis is a mathematical discipline for the study of signals, such as sound and images. The study of signals by way of Fourier analysis involves breaking them down into fundamental pieces that are less complex and, therefore, easier to examine. Information obtained from the individual pieces is then synthesized to obtain information about the original signal. Fourier analysis has had far-reaching applications in other areas of mathematics, physics, engineering, medicine, industry, and the applied sciences. This project will investigate central questions in the field of bilinear Fourier analysis, where a pair of signals are analyzed simultaneously. The outcomes are anticipated to have applications in the theory of partial differential equations, to topics as diverse as fluid dynamics, quantum mechanics, and optics. The project will also contribute to the integration of research and education at the graduate and undergraduate levels.The project aims to contribute to new developments in bilinear Fourier analysis through the investigation of a suite of interrelated questions motivated by applications to analysis and partial differential equations. The project will investigate several approaches, based on tools including representations of functions, Littlewood-Paley techniques, and symbolic calculus, to generate a host of new bilinear estimates and boundedness properties of bilinear pseudodifferential operators. The results are expected to apply to the pointwise multiplication properties of function spaces, local well-posedness results for the Euler equations and the ideal magnetohydrodynamic equations, and scattering properties of solutions of systems of partial differential equations associated to local and nonlocal operators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究项目涉及双线性傅立叶分析。广义上讲,傅立叶分析是一门研究声音和图像等信号的数学学科。用傅立叶分析的方法研究信号包括将它们分解成不那么复杂的基本部分,因此更容易检查。从各个片段获得的信息然后被合成以获得关于原始信号的信息。傅立叶分析在数学、物理、工程、医学、工业和应用科学的其他领域有着深远的应用。这个项目将研究双线性傅立叶分析领域的中心问题,在双线性傅立叶分析中,一对信号被同时分析。这些结果有望在偏微分方程组理论、流体动力学、量子力学和光学等不同的主题中得到应用。该项目还将有助于研究生和本科生水平的研究和教育的整合。该项目旨在通过研究一系列由分析和偏微分方程式的应用所激发的相互关联的问题,促进双线性傅立叶分析的新发展。该项目将研究几种基于工具的方法,包括函数表示、Littlewood-Paley技巧和符号演算,以生成一系列新的双线性估计和双线性伪微分算子的有界性。这些结果有望应用于函数空间的逐点乘法性质,欧拉方程和理想磁流体动力学方程的局部适定性结果,以及与局部和非局部算子相关的偏微分方程组的解的散射性质。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Virginia Naibo其他文献
Rellich identities for the Hilbert transform
希尔伯特变换的 Rellich 恒等式
- DOI:
10.1016/j.jfa.2023.110271 - 发表时间:
2024-02-15 - 期刊:
- 影响因子:1.600
- 作者:
María J. Carro;Virginia Naibo;María Soria-Carro - 通讯作者:
María Soria-Carro
Commutators of Bilinear Pseudodifferential Operators and Lipschitz Functions
- DOI:
10.1007/s00041-016-9519-1 - 发表时间:
2016-12-07 - 期刊:
- 影响因子:1.200
- 作者:
Árpád Bényi;Virginia Naibo - 通讯作者:
Virginia Naibo
The Neumann problem in graph Lipschitz domains in the plane
- DOI:
10.1007/s00208-021-02347-8 - 发表时间:
2022-01-26 - 期刊:
- 影响因子:1.400
- 作者:
María Jesús Carro;Virginia Naibo;Carmen Ortiz-Caraballo - 通讯作者:
Carmen Ortiz-Caraballo
Erratum: Weighted Fractional Leibniz-type Rules for Bilinear Multiplier Operators
- DOI:
10.1007/s11118-022-10060-7 - 发表时间:
2023-03-21 - 期刊:
- 影响因子:0.800
- 作者:
Joshua Brummer;Virginia Naibo - 通讯作者:
Virginia Naibo
Bessel capacities and rectangular differentiation in Besov spaces
- DOI:
10.1016/j.jmaa.2005.12.071 - 发表时间:
2006-12-15 - 期刊:
- 影响因子:
- 作者:
Virginia Naibo - 通讯作者:
Virginia Naibo
Virginia Naibo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Virginia Naibo', 18)}}的其他基金
Collaborative Research: Prairie Analysis Seminar 2020-2021
合作研究:草原分析研讨会2020-2021
- 批准号:
2034591 - 财政年份:2020
- 资助金额:
$ 22.26万 - 项目类别:
Standard Grant
Methods and Applications for Bilinear Operators
双线性算子的方法和应用
- 批准号:
1500381 - 财政年份:2015
- 资助金额:
$ 22.26万 - 项目类别:
Continuing Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - The Global Behavior of Solutions to Critical Nonlinear Wave Equations
NSF/CBMS 数学科学区域会议 - 临界非线性波动方程解的全局行为
- 批准号:
1240744 - 财政年份:2012
- 资助金额:
$ 22.26万 - 项目类别:
Standard Grant
Bilinear techniques in time-frequency and real analysis
时频和实分析中的双线性技术
- 批准号:
1101327 - 财政年份:2011
- 资助金额:
$ 22.26万 - 项目类别:
Standard Grant
相似海外基金
New development of geometric complex analysis based on L2 estimates and L2 extension theorems
基于L2估计和L2可拓定理的几何复形分析新进展
- 批准号:
23K12978 - 财政年份:2023
- 资助金额:
$ 22.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154335 - 财政年份:2022
- 资助金额:
$ 22.26万 - 项目类别:
Standard Grant
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154321 - 财政年份:2022
- 资助金额:
$ 22.26万 - 项目类别:
Standard Grant
Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
- 批准号:
2154402 - 财政年份:2022
- 资助金额:
$ 22.26万 - 项目类别:
Standard Grant
Statistical Methodology for Prediction Modelling to Improve Depression Screening with Individualized Risk Estimates in the Context of Individual Participant Data Meta-analysis
预测建模的统计方法,在个体参与者数据荟萃分析的背景下通过个体化风险估计来改进抑郁症筛查
- 批准号:
444496 - 财政年份:2021
- 资助金额:
$ 22.26万 - 项目类别:
Operating Grants
Stable isotope analysis on the estimates of diet and sex of human skeletal remains of the Jomon period
稳定同位素分析对绳文时代人类骨骼遗骸饮食和性别的估计
- 批准号:
20H01371 - 财政年份:2020
- 资助金额:
$ 22.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Statistical Methodology for Prediction Modelling to Improve Depression Screening with Individualized Risk Estimates in the Context of Individual Participant Data Meta-analysis
预测建模的统计方法,在个体参与者数据荟萃分析的背景下通过个体化风险估计来改进抑郁症筛查
- 批准号:
438267 - 财政年份:2020
- 资助金额:
$ 22.26万 - 项目类别:
Operating Grants
FMitF: Collaborative Research: Track I: Predictive Online Safety Analysis from Multi-hop State Estimates for High-autonomy on Highways
FMITF:合作研究:第一轨:通过多跳状态估计进行预测在线安全分析,以实现高速公路的高度自治
- 批准号:
1918531 - 财政年份:2019
- 资助金额:
$ 22.26万 - 项目类别:
Standard Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
- 批准号:
1856719 - 财政年份:2019
- 资助金额:
$ 22.26万 - 项目类别:
Continuing Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
- 批准号:
1900268 - 财政年份:2019
- 资助金额:
$ 22.26万 - 项目类别:
Continuing Grant