Descriptive set-theoretic graph theory and applications

描述性集合论图论及其应用

基本信息

  • 批准号:
    1500906
  • 负责人:
  • 金额:
    $ 15.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

The central objects of study in this research proposal are combinatorial graphs, which are structures consisting of a underlying collection of vertices, some pairs of which are connected by edges and some pairs remaining unconnected. Despite the simplicity of this concept, familiar to any child who has played a game of connect-the-dots, graphs are sufficiently general to model many phenomena both within mathematics and also in nearby scientific disciplines. For example, graphs have found applications in computer network design, including modeling the evolution of the internet, as well as in statistical physics, including modeling atomic-scale thermodynamic interactions. In these applications, the number of vertices is so large that for analytical purposes it is indistinguishable from being infinite. In this project, the principal investigator will study infinite graphs from the descriptive set-theoretic viewpoint, in essence regarding such graphs abstractly as sets and relating the complexity of their descriptions with their concrete combinatorial properties. In areas of mathematics such as dynamics and probability, such definable graphs arise as limits of finite graphs, and the descriptive set-theoretic methods shed light on this asymptotic behavior. Additionally, the analysis finds applications within descriptive set theory as well, finding new ways of stratifying the relative difficulty of various classification problems.In general, the objective of the project is to understand combinatorial parameters of Borel graphs on standard Borel spaces subject to various measurability constraints. For example, the chromatic number of a graph (the smallest cardinality of the image of a function assigning different values to adjacent vertices) typically has different values when the coloring function is required to be Borel, measurable with respect to some Borel probability measure, or Baire measurable with respect to some compatible Polish topology. While interesting in their own right, such parameters have (often surprising) connections with other areas of mathematics -- including combinatorial and geometric group theory, ergodic theory, probability theory, and operator algebras -- and a secondary aim of the proposal is to strengthen these connections in addition to forging new ones. More precise proposed areas of study within this general setting include: (a) existence of measurable vertex colorings, edge colorings, and matchings, (b) applications to structurability of measured equivalence relations, in particular those arising as orbit equivalence relations of probability-measure-preserving actions of locally compact Polish groups, (c) applications to the global hierarchy of Borel/measure reducibility of definable equivalence relations, especially those just above hyperfinite, (d) connections with the probabilistic aspects of graph limits.
该研究建议中研究的中心对象是组合图,它们是由基本的顶点集合组成的结构,其中一些对通过边缘连接,并且一些对剩下的一对剩下的无关。 尽管这个概念很简单,但任何玩过连接点游戏的孩子都熟悉,图表足以使数学和附近科学学科中的许多现象对许多现象进行建模。 例如,图在计算机网络设计中找到了应用程序,包括建模互联网的演变以及统计物理学,包括建模原子级热力学相互作用。 在这些应用中,顶点的数量是如此之大,以至于出于分析目的,它与无限的区别是无法区分的。 在该项目中,主要研究者将从描述性的理论观点中研究无限图,从本质上讲,这些图抽象地涉及集合,并将其描述的复杂性与混凝土组合属性联系起来。 在数学和概率等数学领域中,可以定义的图形出现,例如有限图的限制,描述性设定理论方法阐明了这种渐近行为。 此外,该分析也发现了描述性集理论中的应用,发现了分层各种分类问题的相对难度的新方法。总的来说,该项目的目的是了解对标准鲍尔尔空间的鲍尔尔图的组合参数,约为受各种可测量性约束。 例如,图形的色数(将不同值分配给相邻顶点的函数的图像的最小基数)通常具有不同的值,而当需要着色函数为borel,相对于某些Borel概率度量,或与某些兼容的波兰拓扑相对于某些BOREL概率度量或BAIRE可测量。 尽管本身有趣,但此类参数与其他数学领域具有(通常令人惊讶的)联系(包括组合和几何群体理论,千古理论,概率理论和操作者代数),该提案的次要目的是增强这些连接以外的这些连接。 More precise proposed areas of study within this general setting include: (a) existence of measurable vertex colorings, edge colorings, and matchings, (b) applications to structurability of measured equivalence relations, in particular those arising as orbit equivalence relations of probability-measure-preserving actions of locally compact Polish groups, (c) applications to the global hierarchy of Borel/measure reducibility of definable equivalence relations, especially those just above高足限,(d)与图形限制的概率方面的连接。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clinton Conley其他文献

BSL volume 29 issue 2 Cover and Front matter
BSL 第 29 卷第 2 期封面和封面
  • DOI:
    10.1017/bsl.2023.20
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Bezhanishvili;S. Kuhlmann;K. Bimbó;Øystein Linnebo;P. Dybjer;A. Muscholl;A. Enayat;Arno Pauly;Albert Atserias;Antonio Montalbán;M. Atten;V. D. Paiva;Clinton Conley;Christian Retoré;D. Macpherson;Nam Trang;Sandra Müller
  • 通讯作者:
    Sandra Müller

Clinton Conley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clinton Conley', 18)}}的其他基金

Descriptive Combinatorics and Group Actions
描述性组合和群动作
  • 批准号:
    2154160
  • 财政年份:
    2022
  • 资助金额:
    $ 15.38万
  • 项目类别:
    Standard Grant
Dynamics Beyond Turbulence and Obstructions to Classification
超越湍流和分类障碍的动力学
  • 批准号:
    2154258
  • 财政年份:
    2022
  • 资助金额:
    $ 15.38万
  • 项目类别:
    Continuing Grant
Descriptive Combinatorics and Ergodic Theory
描述性组合学和遍历理论
  • 批准号:
    1855579
  • 财政年份:
    2019
  • 资助金额:
    $ 15.38万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于激光-视觉协同扫描的复合材料自动铺放全过程检测基础理论与方法
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
基于扩散点火理论的甲烷/氢气高压泄放自燃特性及影响机制的基础研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
煤矿综放采空区二域流场理论与仿真研究
  • 批准号:
    52074148
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
三维有限水体的固-液界面形状、水体水位和气枪沉放位置对陆地水体气枪震源激发的气枪子波信号的传播影响研究
  • 批准号:
    41904046
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
快速充放锂电池的离子扩散机理及其固体电解质界面的理论设计
  • 批准号:
    51602092
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Set-theoretic analysis of Taiwanese ethnic and national identity
台湾民族认同的集合论分析
  • 批准号:
    23K01808
  • 财政年份:
    2023
  • 资助金额:
    $ 15.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Some problems from set-theoretic topology - normality, D-spaces and homogeneity
集合论拓扑的一些问题 - 正态性、D 空间和同质性
  • 批准号:
    RGPIN-2019-06356
  • 财政年份:
    2022
  • 资助金额:
    $ 15.38万
  • 项目类别:
    Discovery Grants Program - Individual
Conferences on Boolean Algebras, Lattices, Algebraic Logic and Quantum Logic, Universal Algebra, Set Theory, and Set-Theoretic and Point-free Topology
布尔代数、格、代数逻辑和量子逻辑、泛代数、集合论、集合论和无点拓扑会议
  • 批准号:
    2223126
  • 财政年份:
    2022
  • 资助金额:
    $ 15.38万
  • 项目类别:
    Continuing Grant
Some problems from set-theoretic topology - normality, D-spaces and homogeneity
集合论拓扑的一些问题 - 正态性、D 空间和同质性
  • 批准号:
    RGPIN-2019-06356
  • 财政年份:
    2021
  • 资助金额:
    $ 15.38万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum integrability from set theoretic Yang-Baxter & reflection equations
集合论 Yang-Baxter 的量子可积性
  • 批准号:
    EP/V008129/1
  • 财政年份:
    2021
  • 资助金额:
    $ 15.38万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了