Descriptive Combinatorics and Group Actions
描述性组合和群动作
基本信息
- 批准号:2154160
- 负责人:
- 金额:$ 24.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project is in the discipline of descriptive set theory: the analysis of sets of numbers by the complexity or simplicity of their description. While abstract set theory is replete with counterintuitive pathologies (such as splitting a ball into five pieces and reassembling them into two copies of the original ball), many of these are circumvented by imposing constraints on the definition of the sets involved. Moreover, the search for definable solutions to some question is often tied closely with the study of algorithms in computer science. In this fashion, algorithms for analyzing configurations in large finite networks often correspond to descriptive set-theoretically simple solutions to infinite problems, and there are notable examples of the infinite analysis shedding light on the finite counterparts as well. Drawing out further connections between these finite and infinite settings is a major focus of the project, which is accessible to student researchers as well as more advanced mathematicians. The project includes the training of undergraduate and graduate students. More specifically, the project applies descriptive set-theoretic methods to examine the structure of definable graphs. Such graphs often arise in topological dynamics and ergodic theory, and in particular their combinatorial properties are often intertwined with algebraic aspects of the acting group. Specific combinatorial problems under investigation include: determining definable chromatic numbers of graphs, identifying when matchings and circulations can be found, and characterizing when such graph admit useful acyclic subgraphs. The project also explores applications of these ideas towards finding tilings of group actions and understanding the equidecomposability relation arising from such actions. These topics are all closely tied with the local model of distributed computing in theoretical computer science and also have interactions with finite combinatorics, graph limits, probability, and geometric group theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目在描述性集理论的学科中:通过其描述的复杂性或简单性来分析数字集。 虽然抽象集理论充满了违反直觉的病理(例如将球分成五个部分并将其重新组装成两个原始球的两个副本),但其中许多是通过对所涉及集合的定义的构成约束来避免的。 此外,寻找某个问题的可确定解决方案通常与计算机科学算法的研究紧密相关。 以这种方式,用于分析大量有限网络中配置的算法通常对应于描述性的理论上简单的解决方案,解决了无限问题,并且有明显的例子,即无限分析也阐明了有限的对应物。 这些有限和无限设置之间的进一步联系是该项目的主要重点,该项目可用于学生研究人员以及更高级的数学家。该项目包括对本科生和研究生的培训。更具体地说,该项目应用描述性设置理论方法来检查可定义图的结构。 这些图通常是在拓扑动力学和千古理论中出现的,尤其是它们的组合特性通常与代理群体的代数方面交织在一起。调查中的特定组合问题包括:确定图形的可定义色数,识别何时可以找到匹配和循环,并表征该图何时允许有用的无环子图。该项目还探讨了这些思想在寻找团体行动的瓷砖方面的应用,并了解这种行动引起的等分可使性关系。 这些主题都与理论计算机科学中的分布式计算的本地模型紧密相关,并且还与有限的组合学,图形限制,概率和几何群体理论有着相互作用。该奖项反映了NSF的法定任务,并被认为是通过使用该基金会的智力和更广泛影响的评估来审查CRITERIA的评估来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clinton Conley其他文献
BSL volume 29 issue 2 Cover and Front matter
BSL 第 29 卷第 2 期封面和封面
- DOI:
10.1017/bsl.2023.20 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
G. Bezhanishvili;S. Kuhlmann;K. Bimbó;Øystein Linnebo;P. Dybjer;A. Muscholl;A. Enayat;Arno Pauly;Albert Atserias;Antonio Montalbán;M. Atten;V. D. Paiva;Clinton Conley;Christian Retoré;D. Macpherson;Nam Trang;Sandra Müller - 通讯作者:
Sandra Müller
Clinton Conley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clinton Conley', 18)}}的其他基金
Dynamics Beyond Turbulence and Obstructions to Classification
超越湍流和分类障碍的动力学
- 批准号:
2154258 - 财政年份:2022
- 资助金额:
$ 24.43万 - 项目类别:
Continuing Grant
Descriptive Combinatorics and Ergodic Theory
描述性组合学和遍历理论
- 批准号:
1855579 - 财政年份:2019
- 资助金额:
$ 24.43万 - 项目类别:
Continuing Grant
Descriptive set-theoretic graph theory and applications
描述性集合论图论及其应用
- 批准号:
1500906 - 财政年份:2015
- 资助金额:
$ 24.43万 - 项目类别:
Standard Grant
相似国自然基金
大豆玉米秸秆组合还田分解和向土壤有机碳转化的过程及其生物学机制
- 批准号:42377338
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Schubert演算的组合学
- 批准号:12371329
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
齿菌属(Hydnum)的系统学与菌根组合类型研究
- 批准号:32300002
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
病证结合“症状-症状组合-证候”基因组测序层面生物学基础研究的新方法学研究
- 批准号:82174237
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于多组学数据的癌症合成致死基因组合的研究
- 批准号:62171236
- 批准年份:2021
- 资助金额:64 万元
- 项目类别:面上项目
相似海外基金
Machine learning, group theory and combinatorics
机器学习、群论和组合学
- 批准号:
DP230102982 - 财政年份:2023
- 资助金额:
$ 24.43万 - 项目类别:
Discovery Projects
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2022
- 资助金额:
$ 24.43万 - 项目类别:
Discovery Grants Program - Individual
Conference on Combinatorics, Computing, Group Theory, and Applications 2022
2022 年组合学、计算、群论和应用会议
- 批准号:
2221946 - 财政年份:2022
- 资助金额:
$ 24.43万 - 项目类别:
Standard Grant
Combinatorics and commutative algebra of algebraic varieties with group actions
具有群作用的代数簇的组合学和交换代数
- 批准号:
RGPIN-2017-05732 - 财政年份:2021
- 资助金额:
$ 24.43万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics and Geometry of Symmetric Group Representations
对称群表示的组合学和几何
- 批准号:
2204415 - 财政年份:2021
- 资助金额:
$ 24.43万 - 项目类别:
Standard Grant