Inverse Problems: Visibility and Invisibility
反问题:可见性和不可见性
基本信息
- 批准号:1501049
- 负责人:
- 金额:$ 18.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Some of the most powerful methods of understanding the world around us use forms of wave propagation: electromagnetic waves (e.g. light or radio); sound waves; elastic waves and so on, because they can interact with different media in an understandable way while exerting little influence on those media. The non-intrusive nature of these sensing methods is applied in many areas of science and technology including medical imaging, geophysics, non-destructive testing, remote sensing and so on. The fundamental mathematical theory behind such enhancement of "visibility" is the main aspect of inverse problems, while another aspect of the subject seeks to hide an object from detection by waves, that is, to make it "invisible". These projects concern both aspects, visibility and invisibility, for various waves. For visibility, the investigator plans to develop mathematical techniques to address some of the challenging questions in inverse problems that may have real world applications in the future. For instance, the Thermo-acoustic Tomography (TAT) medical imaging modality has the potential to detect breast cancer cells at a much earlier stage than is currently feasible. The simultaneous improvement in contrast and resolution resulting from such coupled-physics modalities is the subject of intensive mathematical study. Another example is the CT scan, whose mathematical theory is the fundamental tool in integral geometry. Analysis of the mathematics of wave propagation in complicated materials is essential for interpreting seismic information about the earth. As for invisibility, the development of "meta-materials" permits the customization of electromagnetic or acoustic media and has inspired the theory of transformation-optics based invisible cloak design. At the mathematical level, this leads to further applications based on electromagnetic waves (e.g., light) manipulation. These projects will focus on a couple of issues, known as the artificial blackhole and Eaton lens. The first major topic of the project is inverse boundary value problems for Maxwell's equations. Challenging questions to be investigated include: inverse electromagnetic problems with incomplete data of measurements and inverse electromagnetic problems on a medium with anisotropic parameters. We will also consider some special solutions to Maxwell's equations that describe a type of bending accelerating wave packets. This part of the project also concerns electromagnetic invisibility and other applications based on transformation-optics, such as artificial black holes. The PI is also proposing to investigate another construction idea of cloaking device based on singular geometry, known as the Eaton lens. The second major topic of the project focuses on inverse problems arising in nonlinear wave propagation, where the nonlinearity provides new information. This also leads naturally to the third topic of the project due to the connection between hyperbolic wave propagations and geometric boundary rigidity problems. These inverse problems form the basis of several tomography methods. The PI plans to work on this topic for more generalized cases, and with limited measurements. In the last part of the project the PI plans to consider coupled-physics (i.e., hybrid) medical imaging modalities. In particular, the PI is interested in the uniqueness of the reconstruction of electrical properties from the internal absorbed radiation map.
了解我们周围世界的一些最有力的方法是使用波传播的形式:电磁波(例如光或无线电);声波;弹性波等等,因为它们可以以一种可以理解的方式与不同的介质相互作用,而对这些介质的影响很小。这些传感方法的非侵入性被应用于许多科学技术领域,包括医学成像、地球物理、无损检测、遥感等。这种增强“可见性”背后的基本数学理论是逆问题的主要方面,而该学科的另一个方面是寻求隐藏物体,使其不被波检测到,即使其“不可见”。这些项目涉及到不同波浪的可见性和不可见性两个方面。为了提高可见性,研究者计划开发数学技术来解决逆问题中的一些具有挑战性的问题,这些问题将来可能会在现实世界中得到应用。例如,热声断层扫描(TAT)医学成像模式有可能在比目前可行的更早的阶段检测到乳腺癌细胞。这种耦合物理模态所带来的对比度和分辨率的同时提高是深入数学研究的主题。另一个例子是CT扫描,它的数学理论是积分几何的基本工具。波在复杂物质中传播的数学分析对于解释有关地球的地震信息是必不可少的。至于隐形,“超材料”的发展允许定制电磁或声学介质,并启发了基于变换光学的隐形斗篷设计理论。在数学层面上,这导致了基于电磁波(例如光)操作的进一步应用。这些项目将集中在两个问题上,即人工黑洞和伊顿透镜。项目的第一个主要课题是麦克斯韦方程组的反边值问题。具有挑战性的问题包括:测量数据不完全的电磁反问题和各向异性介质上的电磁反问题。我们还将考虑描述一类弯曲加速波包的麦克斯韦方程组的一些特殊解。该项目的这一部分还涉及电磁隐身和其他基于变换光学的应用,如人工黑洞。PI还提议研究另一种基于奇异几何的隐形装置的构造理念,即伊顿透镜。该项目的第二个主要课题集中在非线性波传播中出现的逆问题,其中非线性提供了新的信息。由于双曲波传播和几何边界刚性问题之间的联系,这也自然导致了该项目的第三个主题。这些反问题构成了几种层析成像方法的基础。PI计划在更一般化的情况下使用有限的测量方法来研究这个主题。在项目的最后一部分,PI计划考虑耦合物理(即混合)医学成像模式。特别是,PI对从内部吸收辐射图重建电学性质的唯一性感兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ting Zhou其他文献
Fine‐needle aspiration of alveolar soft part sarcoma: Histologic correlation and aberrant CD68 expression
腺泡状软组织肉瘤的细针抽吸:组织学相关性和异常 CD68 表达
- DOI:
10.1002/dc.24039 - 发表时间:
2018 - 期刊:
- 影响因子:1.3
- 作者:
Ya Xu;Ting Zhou;Wendong Yu;N. Zarrin - 通讯作者:
N. Zarrin
Selective knockdown of misfolded SOD1 as a therapy for amyotrophic lateral sclerosis
选择性敲除错误折叠的 SOD1 作为肌萎缩侧索硬化症的治疗方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ting Zhou - 通讯作者:
Ting Zhou
Role of platelet infiltration as independent prognostic marker for gastric adenocarcinomas
血小板浸润作为胃腺癌独立预后标志物的作用
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jing Wang;Miao Zhang;Ting Zhou;Shengmei Zhao;Zhenguo Su;Xiangdong Liu - 通讯作者:
Xiangdong Liu
Modeling and Analysis on Two-Way Relay Networks: A Joint Mechanism Using NOMA and Network Coding
双向中继网络的建模与分析:使用 NOMA 和网络编码的联合机制
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Fanbo Wei;Ting Zhou;Tianheng Xu;Honglin Hu - 通讯作者:
Honglin Hu
Dive Into Deep Learning Based Automatic Modulation Classification: A Disentangled Approach
深入研究基于深度学习的自动调制分类:一种解开的方法
- DOI:
10.1109/access.2020.3003689 - 发表时间:
2020 - 期刊:
- 影响因子:3.9
- 作者:
Xiaolei Shang;Honglin Hu;Xiaoqiang Li;Tianheng Xu;Ting Zhou - 通讯作者:
Ting Zhou
Ting Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ting Zhou', 18)}}的其他基金
Electromagnetic Inverse Problems: Visibility and Invisibility
电磁反演问题:可见性和不可见性
- 批准号:
1544138 - 财政年份:2014
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
Electromagnetic Inverse Problems: Visibility and Invisibility
电磁反演问题:可见性和不可见性
- 批准号:
1161129 - 财政年份:2012
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
相似海外基金
Electromagnetic Inverse Problems: Visibility and Invisibility
电磁反演问题:可见性和不可见性
- 批准号:
1544138 - 财政年份:2014
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
Electromagnetic Inverse Problems: Visibility and Invisibility
电磁反演问题:可见性和不可见性
- 批准号:
1161129 - 财政年份:2012
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
Visibility-based polygon search problems
基于可见性的多边形搜索问题
- 批准号:
327436-2008 - 财政年份:2012
- 资助金额:
$ 18.88万 - 项目类别:
Discovery Grants Program - Individual
Visibility-based polygon search problems
基于可见性的多边形搜索问题
- 批准号:
327436-2008 - 财政年份:2011
- 资助金额:
$ 18.88万 - 项目类别:
Discovery Grants Program - Individual
Visibility-based polygon search problems
基于可见性的多边形搜索问题
- 批准号:
327436-2008 - 财政年份:2010
- 资助金额:
$ 18.88万 - 项目类别:
Discovery Grants Program - Individual
Dynamic Visibility and Inverse Source Problems in Unknown Environments with Complicated Topology.
具有复杂拓扑的未知环境中的动态可见性和逆源问题。
- 批准号:
0914840 - 财政年份:2009
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
Visibility-based polygon search problems
基于可见性的多边形搜索问题
- 批准号:
327436-2008 - 财政年份:2009
- 资助金额:
$ 18.88万 - 项目类别:
Discovery Grants Program - Individual
Studies on rational visibility problems of a Lie Group and extensions of symplectic classes by a model for the evaluation map
用评价图模型研究李群有理可见性问题和辛类的扩展
- 批准号:
20540070 - 财政年份:2008
- 资助金额:
$ 18.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Visibility-based polygon search problems
基于可见性的多边形搜索问题
- 批准号:
327436-2008 - 财政年份:2008
- 资助金额:
$ 18.88万 - 项目类别:
Discovery Grants Program - Individual
Variational Approaches to Optimizations and Adaptivity in Problems Involving Visibility
涉及可见性问题的优化和自适应变分方法
- 批准号:
0513394 - 财政年份:2005
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant