Electromagnetic Inverse Problems: Visibility and Invisibility

电磁反演问题:可见性和不可见性

基本信息

  • 批准号:
    1544138
  • 负责人:
  • 金额:
    $ 3.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-10-24 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

This project aims to address several fundamental problems in the mathematical theory of inverse problems involving electromagnetic wave propagation as modeled by the Helmholtz and Maxwell equations. The first part of the project concerns the question of determining the internal properties of a medium by making electromagnetic (EM) measurements at the boundary. Challenging questions include recovering the shape information of electromagnetic inclusions and obstacles from boundary data, full reconstruction of EM parameters for an isotropic medium with incomplete boundary data, and the inverse problem for anisotropic media, where the unique reconstruction is possible only up to a change of variables. Such loss of uniqueness in the latter case leads to the second major topic of the project, namely, transformation-optics-based invisibility. The proposed study covers the regularized approximate electromagnetic cloaking scheme, whose limiting behavior provides important physical and mathematical implications for the singular structure required in an ideal cloaking design. The last part of the proposed project considers thermo-acoustic tomography (TAT), a hybrid medical imaging modality that combines low frequency electromagnetic waves with acoustic waves through the physical "photo-acoustic' effect. In particular, the principal investigator plans to address the problem of reconstructing the electrical parameters and refractive indices of the medium from the internal absorbed radiation map. The fundamental task of science is to probe the world around us. The most powerful tool to do this is to use waves (e.g., electromagnetic waves, acoustic waves, elastic waves), because waves can interact with different media in nonintrusive ways. Such nonintrusive investigation is greatly appreciated in many areas of science and technology, including medical imaging, geophysics, nondestructive testing, remote sensing, and so on. The fundamental mathematical theory behind such enhancement of "visibility" is the main topic of inverse problems, while another aspect is to hide an object from detection by waves, that is, to make it "invisible." The proposed project concerns both aspects, visibility and invisibility, for electromagnetic waves. For visibility, the proposer plans to develop mathematical techniques to address some of the challenging questions in inverse problems that will undoubtedly have real world applications in the future. For instance, the thermo-acoustic tomography (TAT) medical imaging modality has the potential to detect breast cancer cells at a much earlier stage than what is currently feasible. The development of mathematical theory of TAT will also shed light on a larger class of inverse problems with internal data such as PAT (photo-acoustic tomography), TE (transient elastography), UMT (ultrasound modulated electrical and optical impedance tomography), as well as other similar hybrid imaging modalities. The simultaneous improvement in contrast and resolution is the subject of intensive mathematical study and also of this project. As for invisibility, the development of "meta-materials" that have electromagnetic or acoustic properties not found in nature has inspired the transformation-optics based blueprint of the invisible cloak. Experimental and theoretical results indicate that invisibility is no longer just science fiction. This theoretical study seeks to understand and confront the difficulties under a realistic approximate scheme, which will benefit experimental endeavors. It provides an effective way to bridge the gap between reality and imagination that is still vast for current technology.
本项目旨在解决电磁波传播逆问题的数学理论中的几个基本问题,这些问题由亥姆霍兹和麦克斯韦方程组建模。该项目的第一部分涉及通过在边界处进行电磁(EM)测量来确定介质内部特性的问题。这些问题包括从边界数据中恢复电磁夹杂物和障碍物的形状信息,在边界数据不完整的情况下对各向同性介质的电磁参数进行完全重建,以及各向异性介质的反问题,其中唯一的重建只有在变量变化时才有可能。在后一种情况下,这种独特性的丧失导致了该项目的第二个主要课题,即基于变换光学的不可见性。拟议的研究涵盖了正则化的近似电磁隐身方案,其限制行为提供了重要的物理和数学意义的奇异结构中所需的理想隐身设计。拟议项目的最后一部分考虑热声断层扫描(达特),一种混合医学成像模式,通过物理“光声”效应将低频电磁波与声波相结合。特别是,首席研究员计划解决从内部吸收辐射图重建介质的电参数和折射率的问题。科学的基本任务是探索我们周围的世界。实现这一点的最强大的工具是使用波(例如,电磁波、声波、弹性波),因为波可以以非侵入性的方式与不同的介质相互作用。这种非侵入性的探测在医学成像、光物理、无损检测、遥感等许多科学技术领域都受到了广泛的重视。这种增强“可见性”的基本数学理论是反问题的主要课题,而另一个方面是隐藏物体以使其不被波探测到,即使其“不可见”。“拟议的项目涉及电磁波的可见性和不可见性两个方面。对于可见性,提议者计划开发数学技术来解决反问题中的一些具有挑战性的问题,这些问题无疑将在未来具有真实的世界应用。例如,热声断层扫描(达特)医学成像模式有可能在比目前可行的更早的阶段检测乳腺癌细胞。达特的数学理论的发展也将揭示一个更大的类的逆问题与内部数据,如PAT(光声层析成像),TE(瞬态弹性成像),UMT(超声调制的电和光阻抗层析成像),以及其他类似的混合成像模式。同时提高对比度和分辨率是深入的数学研究的主题,也是这个项目的主题。至于隐形,具有自然界中没有的电磁或声学特性的“超材料”的发展激发了基于变换光学的隐形斗篷蓝图。实验和理论结果表明,隐形不再只是科幻小说。本文的理论研究试图在一个现实的近似方案下理解和面对困难,这将有利于实验的努力。它提供了一种有效的方法来弥合现实和想象之间的差距,这对当前的技术来说仍然是巨大的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ting Zhou其他文献

Fine‐needle aspiration of alveolar soft part sarcoma: Histologic correlation and aberrant CD68 expression
腺泡状软组织肉瘤的细针抽吸:组织学相关性和异常 CD68 表达
  • DOI:
    10.1002/dc.24039
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Ya Xu;Ting Zhou;Wendong Yu;N. Zarrin
  • 通讯作者:
    N. Zarrin
Selective knockdown of misfolded SOD1 as a therapy for amyotrophic lateral sclerosis
选择性敲除错误折叠的 SOD1 作为肌萎缩侧索硬化症的治疗方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ting Zhou
  • 通讯作者:
    Ting Zhou
Role of platelet infiltration as independent prognostic marker for gastric adenocarcinomas
血小板浸润作为胃腺癌独立预后标志物的作用
Modeling and Analysis on Two-Way Relay Networks: A Joint Mechanism Using NOMA and Network Coding
双向中继网络的建模与分析:使用 NOMA 和网络编码的联合机制
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Fanbo Wei;Ting Zhou;Tianheng Xu;Honglin Hu
  • 通讯作者:
    Honglin Hu
Dive Into Deep Learning Based Automatic Modulation Classification: A Disentangled Approach
深入研究基于深度学习的自动调制分类:一种解开的方法
  • DOI:
    10.1109/access.2020.3003689
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Xiaolei Shang;Honglin Hu;Xiaoqiang Li;Tianheng Xu;Ting Zhou
  • 通讯作者:
    Ting Zhou

Ting Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ting Zhou', 18)}}的其他基金

Inverse Problems: Visibility and Invisibility
反问题:可见性和不可见性
  • 批准号:
    1501049
  • 财政年份:
    2015
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Continuing Grant
Electromagnetic Inverse Problems: Visibility and Invisibility
电磁反演问题:可见性和不可见性
  • 批准号:
    1161129
  • 财政年份:
    2012
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Continuing Grant

相似国自然基金

新型简化Inverse Lax-Wendroff方法的发展与应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
  • 批准号:
    11801143
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Algorithms and Systems for Electromagnetic and Ultrasound Inverse Problems
电磁和超声反问题的算法和系统
  • 批准号:
    RGPIN-2017-05496
  • 财政年份:
    2021
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Systems for Electromagnetic and Ultrasound Inverse Problems
电磁和超声反问题的算法和系统
  • 批准号:
    RGPIN-2017-05496
  • 财政年份:
    2020
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Systems for Electromagnetic and Ultrasound Inverse Problems
电磁和超声反问题的算法和系统
  • 批准号:
    RGPIN-2017-05496
  • 财政年份:
    2019
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Systems for Electromagnetic and Ultrasound Inverse Problems
电磁和超声反问题的算法和系统
  • 批准号:
    RGPIN-2017-05496
  • 财政年份:
    2018
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Discovery Grants Program - Individual
Direct and Inverse Electromagnetic Scattering Problems for Complex Periodic Media
复杂周期性介质的正向和逆向电磁散射问题
  • 批准号:
    1812693
  • 财政年份:
    2018
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Standard Grant
Algorithms and Systems for Electromagnetic and Ultrasound Inverse Problems
电磁和超声反问题的算法和系统
  • 批准号:
    RGPIN-2017-05496
  • 财政年份:
    2017
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Discovery Grants Program - Individual
Electromagnetic Inverse Problems: Visibility and Invisibility
电磁反演问题:可见性和不可见性
  • 批准号:
    1161129
  • 财政年份:
    2012
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Continuing Grant
Advanced algorithms for computationally intensive design and inverse electromagnetic problems
用于计算密集型设计和逆电磁问题的高级算法
  • 批准号:
    348998-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Collaborative Research and Development Grants
Interdisciplinary Workshop on Electromagnetic Inverse Problems
电磁反问题跨学科研讨会
  • 批准号:
    EP/G065047/1
  • 财政年份:
    2009
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Research Grant
Advanced algorithms for computationally intensive design and inverse electromagnetic problems
用于计算密集型设计和逆电磁问题的高级算法
  • 批准号:
    348998-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 3.55万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了