Dynamical Systems and Ergodic Theory Conference
动力系统和遍历理论会议
基本信息
- 批准号:1501074
- 负责人:
- 金额:$ 4.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in the "Dynamical Systems and Ergodic Theory Conference" hosted by the Department of Mathematics of the University of Alabama at Birmingham, May 18 - 20, 2015. Dynamical systems, ergodic theory, and probability are important fields of modern mathematics dealing with complicated systems and their development over time. By noticing and analyzing patterns of such developments, dynamical systems and ergodic theory often allow one to describe stable states of a system, predict changes in a system, and assess their likelihood. The connection to probabilistic models often aids in these goals. The conference will bring together senior and junior researchers who will be exposed to the most recent results in the field and will participate in fruitful scientific exchanges. This will create a true synergy, push the bounds of our understanding of mathematics further, and lead to new discoveries. The meeting features presentations by leaders in dynamical systems, ergodic theory, and their interface with probability theory. This conference will advance knowledge through communication of recent results to a wide audience that includes graduate students and recent Ph.D. recipients, as well as members of groups that are not well represented in the mathematical sciences. An important contribution of the conference is the special opportunities afforded to junior participants to present their work to the international leaders in this area. Conference web site: people.cas.uab.edu/~ablokh/Chernov-conference-2015
该奖项支持参加由阿拉巴马大学伯明翰分校数学系于2015年5月18-20日举办的“动态系统与遍历理论会议”。动力系统、遍历理论和概率论是处理复杂系统及其随时间发展的现代数学的重要领域。通过注意和分析这种发展的模式,动力系统和遍历理论通常允许人们描述系统的稳定状态,预测系统中的变化,并评估它们的可能性。与概率模型的联系通常有助于实现这些目标。会议将汇聚资深和初级研究人员,他们将接触到该领域的最新成果,并将参与富有成效的科学交流。这将产生真正的协同效应,进一步推动我们对数学的理解,并导致新的发现。会议的特色是动力系统、遍历理论以及他们与概率理论的接口方面的领导人的演讲。这次会议将通过向广大受众传播最新成果来增进知识,这些受众包括研究生和最近的博士获得者,以及在数学科学中没有很好代表的群体的成员。会议的一个重要贡献是为初级与会者提供了向这一领域的国际领导人介绍他们的工作的特殊机会。会议网址:people.cas.uab.edu/~ablokh/Chernov-conference-2015
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Blokh其他文献
Applications of almost one-to-one maps
- DOI:
10.1016/j.topol.2004.03.009 - 发表时间:
2006-04-01 - 期刊:
- 影响因子:
- 作者:
Alexander Blokh;Lex Oversteegen;E.D. Tymchatyn - 通讯作者:
E.D. Tymchatyn
Rotation Sets of Billiards with One Obstacle
- DOI:
10.1007/s00220-006-0014-4 - 发表时间:
2006-04-14 - 期刊:
- 影响因子:2.600
- 作者:
Alexander Blokh;Michał Misiurewicz;Nándor Simányi - 通讯作者:
Nándor Simányi
Attractors and recurrence for dendrite-critical polynomials
- DOI:
10.1016/j.jmaa.2004.10.038 - 发表时间:
2005-06-15 - 期刊:
- 影响因子:
- 作者:
Alexander Blokh;Michał Misiurewicz - 通讯作者:
Michał Misiurewicz
Rotational subsets of the circle under <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><msup><mi>z</mi><mi>d</mi></msup></math>
- DOI:
10.1016/j.topol.2005.04.010 - 发表时间:
2006-04-01 - 期刊:
- 影响因子:
- 作者:
Alexander Blokh;James M. Malaugh;John C. Mayer;Lex G. Oversteegen;Daniel K. Parris - 通讯作者:
Daniel K. Parris
The Julia sets of quadratic Cremer polynomials
- DOI:
10.1016/j.topol.2006.02.001 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:
- 作者:
Alexander Blokh;Lex Oversteegen - 通讯作者:
Lex Oversteegen
Alexander Blokh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Blokh', 18)}}的其他基金
Complex and real topological dynamics
复杂而真实的拓扑动力学
- 批准号:
1201450 - 财政年份:2012
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
Laminations and Low-Dimensional Dynamical Systems
叠片和低维动力系统
- 批准号:
0456748 - 财政年份:2005
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
Topological Dynamics in Real and Complex Systems
真实和复杂系统中的拓扑动力学
- 批准号:
0140349 - 财政年份:2002
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
Attractors, Smooth Dynamics and Combinatorics in Low-Dimension
低维吸引子、平滑动力学和组合学
- 批准号:
9970363 - 财政年份:1999
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
Mathematical Sciences: Combinatorial and Measure-Theoretic Structure of Dynamical Systems
数学科学:动力系统的组合和测度理论结构
- 批准号:
9626303 - 财政年份:1996
- 资助金额:
$ 4.54万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 4.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ergodic properties of infinite dimensional dynamical systems
无限维动力系统的遍历性质
- 批准号:
2888861 - 财政年份:2023
- 资助金额:
$ 4.54万 - 项目类别:
Studentship
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:
RGPIN-2017-06521 - 财政年份:2022
- 资助金额:
$ 4.54万 - 项目类别:
Discovery Grants Program - Individual
Applications of Descriptive Set Theory in Ergodic Theory and Smooth Dynamical Systems
描述集合论在遍历理论和光滑动力系统中的应用
- 批准号:
2100367 - 财政年份:2021
- 资助金额:
$ 4.54万 - 项目类别:
Continuing Grant
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:
RGPIN-2017-06521 - 财政年份:2021
- 资助金额:
$ 4.54万 - 项目类别:
Discovery Grants Program - Individual
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:
RGPIN-2017-06521 - 财政年份:2020
- 资助金额:
$ 4.54万 - 项目类别:
Discovery Grants Program - Individual
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:
RGPIN-2017-06521 - 财政年份:2019
- 资助金额:
$ 4.54万 - 项目类别:
Discovery Grants Program - Individual
Generic ergodic optimisation for invertible dynamical systems
可逆动力系统的通用遍历优化
- 批准号:
2119786 - 财政年份:2018
- 资助金额:
$ 4.54万 - 项目类别:
Studentship
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:
RGPIN-2017-06521 - 财政年份:2018
- 资助金额:
$ 4.54万 - 项目类别:
Discovery Grants Program - Individual
Ergodic theory of low-dimensional dynamical systems
低维动力系统的遍历理论
- 批准号:
RGPIN-2017-06521 - 财政年份:2017
- 资助金额:
$ 4.54万 - 项目类别:
Discovery Grants Program - Individual