Applications of Descriptive Set Theory in Ergodic Theory and Smooth Dynamical Systems
描述集合论在遍历理论和光滑动力系统中的应用
基本信息
- 批准号:2100367
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Models of physical phenomena are often formulated as dynamical systems, rules that specify how quantities evolve in time. There are many different types of dynamical systems, and one important mathematical question is to classify the statistical or qualitative behavior of these systems. This project uses descriptive set theory to show what kinds of classification are possible and to establish the mathematical limitations of general classifications. The project involves graduate students.Classification of dynamical systems can be approached by classifying the statistical and qualitative behavior of diffeomorphisms of compact manifolds and establishing criteria for deciding when time forwards is isomorphic to time backwards (in the appropriate category). These questions are closely related to which abstract measure-preserving transformations are isomorphic to volume-preserving diffeomorphisms of compact manifolds. This project studies when classifications are possible with inherently countable methods and explores methods for realizing abstract transformations as diffeomorphisms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物理现象的模型通常被表述为动力系统,即指定量如何随时间演变的规则。有许多不同类型的动力系统,一个重要的数学问题是对这些系统的统计或定性行为进行分类。这个项目使用描述集合论来展示什么样的分类是可能的,并建立一般分类的数学限制。该项目涉及研究生。动力系统的分类可以通过对紧致流形的同构的统计和定性行为进行分类,并建立判定时间向前与时间向后同构的标准(在适当的类别中)来实现。 这些问题与哪些抽象的保测变换同构于紧致流形的保体积同构密切相关。 该项目研究在什么情况下可以使用固有可数方法进行分类,并探索将抽象变换实现为同构的方法。该奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rank-one transformations, odometers, and finite factors
一级变换、里程表和有限因子
- DOI:10.1007/s11856-022-2451-y
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Foreman, Matthew;Gao, Su;Hill, Aaron;Silva, Cesar E.;Weiss, Benjamin
- 通讯作者:Weiss, Benjamin
Odometer Based Systems
基于里程表的系统
- DOI:10.1007/s11856-022-2439-7
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Foreman, Matthew;Weiss, Benjamin
- 通讯作者:Weiss, Benjamin
Measure preserving diffeomorphisms of the torus are unclassifiable
保留环面微分同胚的测度是不可分类的
- DOI:10.4171/jems/1151
- 发表时间:2022
- 期刊:
- 影响因子:2.6
- 作者:Foreman, Matthew;Weiss, Benjamin
- 通讯作者:Weiss, Benjamin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Foreman其他文献
Proceedings from a panel homosexuality: From declassification to decriminalization. Where do we go from here?
同性恋小组的诉讼程序:从解密到非刑事化。
- DOI:
10.1525/srsp.2004.1.3.71 - 发表时间:
2004 - 期刊:
- 影响因子:2.6
- 作者:
G. Herdt;Judy Young;R. Kertzner;Matthew Foreman;R. Díaz;Caitlin Ryan;A. Belkin - 通讯作者:
A. Belkin
A partition relation for successors of Large Cardinals
- DOI:
10.1007/s00208-002-0323-7 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:1.400
- 作者:
Matthew Foreman;Andras Hajnal - 通讯作者:
Andras Hajnal
Racial modernity in Republican China, 1927-1937
民国时期的种族现代性,1927-1937
- DOI:
10.1080/14631369.2020.1792765 - 发表时间:
2020 - 期刊:
- 影响因子:1.6
- 作者:
Matthew Foreman - 通讯作者:
Matthew Foreman
Utility and Usability of the MYO Gesture Armband as a Fine Motor Virtual Reality Gaming Intervention
- DOI:
10.1016/j.apmr.2016.08.390 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:
- 作者:
Kelly Taylor;Jack Engsberg;Matthew Foreman - 通讯作者:
Matthew Foreman
Preliminary Efficacy of a Complex Intervention for Motor and Activity Limitations Post-Stroke
- DOI:
10.1016/j.apmr.2017.08.306 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:
- 作者:
Anna Boone;Matthew Foreman;Jack Engsberg - 通讯作者:
Jack Engsberg
Matthew Foreman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Foreman', 18)}}的其他基金
Applications of Descriptive Set Theory in Dynamical Systems
描述集合论在动力系统中的应用
- 批准号:
1700143 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Collaborative Research: EMSW21-RTG: Logic in Southern California
合作研究:EMSW21-RTG:南加州的逻辑
- 批准号:
1044150 - 财政年份:2011
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Applications of descriptive set theory in Ergodic theory and investigations into singular cardinals combinatorics
描述性集合论在遍历理论中的应用及奇异基数组合学的研究
- 批准号:
0701030 - 财政年份:2007
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Investigations into Set Theory and Ergodic Theory
集合论和遍历理论的研究
- 批准号:
0400887 - 财政年份:2004
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Some Problems in Set Theory and Ergodic Theory
集合论和遍历论中的一些问题
- 批准号:
0101155 - 财政年份:2001
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Investigations into Set Theory and Descriptive Dynamics
集合论和描述动力学的研究
- 批准号:
9803126 - 财政年份:1998
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Descriptive Set Theory, Ergodic Theory and Set Theory
数学科学:描述集合论、遍历理论和集合论中的问题
- 批准号:
9500494 - 财政年份:1995
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Mathematical Sciences: Some Investigation into the ContinuumHypotheses and also Set-Theoretic Aspects of Group Actions
数学科学:对连续统假设以及群行为的集合论方面的一些研究
- 批准号:
9496286 - 财政年份:1994
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
相似海外基金
Descriptive Set Theory and Its Applications
描述集合论及其应用
- 批准号:
1950475 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Applications of Descriptive Set Theory in Dynamical Systems
描述集合论在动力系统中的应用
- 批准号:
1700143 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Descriptive set-theoretic graph theory and applications
描述性集合论图论及其应用
- 批准号:
1500906 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Descriptive Set Theory and Its Applications
描述集合论及其应用
- 批准号:
1464475 - 财政年份:2015
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Descriptive Set Theory and Its Applications
描述集合论及其应用
- 批准号:
0968710 - 财政年份:2010
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Applications of descriptive set theory to functional analysis and topological dynamics
描述集合论在泛函分析和拓扑动力学中的应用
- 批准号:
0901405 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Invariant Descriptive Set Theory and Its Applications
不变描述集合论及其应用
- 批准号:
0901853 - 财政年份:2009
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Applications of descriptive set theory in Ergodic theory and investigations into singular cardinals combinatorics
描述性集合论在遍历理论中的应用及奇异基数组合学的研究
- 批准号:
0701030 - 财政年份:2007
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
Applications of Descriptive Set Theory to Ideals of Closed Sets and Indecomposable Continua
描述集合论在闭集理想和不可分解连续体中的应用
- 批准号:
0342318 - 财政年份:2003
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Applications of Descriptive Set Theory to Ideals of Closed Sets and Indecomposable Continua
描述集合论在闭集理想和不可分解连续体中的应用
- 批准号:
0102254 - 财政年份:2001
- 资助金额:
$ 39万 - 项目类别:
Standard Grant