Understanding Gravity at the Smallest Scale

了解最小尺度的重力

基本信息

  • 批准号:
    1502156
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-15 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

Understanding the nature of gravity at microscopic distances is one of the most important open problems in fundamental physics. Although General Relativity provides an extremely well-tested framework for describing gravitational effects at large distances, it cannot provide consistently a description of gravity at small scales where quantum effects are prevalent. The development of a quantum theory of gravity is a central goal of fundamental physics, with broad implications for our understanding of particle physics and the mysterious nature of the "dark energy" that appears to permeate the universe. Many theories attempting to provide a consistent microscopic framework for gravity (e.g., those involving extra dimensions) predict that gravity could deviate from the familiar inverse square law at sub-millimeter distances. Such deviations are extremely difficult to measure experimentally due to the small strength of gravitational interactions at microscopic distances. This project represents an attempt to do this. At the same time, while the direct scientific goals of this program are clearly central to the development of modern physics, the general investigation of the technique should enrich many other fields of science and technology. The ability to trap and control small objects in vacuum using laser beams is being explored for applications in quantum control, quantum computing and in the general area of detection of small forces. In addition the work will require the detailed understanding of residual electromagnetic interactions between the microspheres and the materials composing the attractors, and it is conceivable that progress in this area may enable new techniques for measuring properties of surfaces that are not yet accessible by probes such as Atomic Force Microscopes. Finally, the students (graduate and undergraduate) exposed to the project will receive a very complete training in many areas of science and technology.Previous measurements at these distance scales have employed techniques derived from human-size devices in which mechanical springs are used as force sensors. We propose in this project to develop a drastically new technique, using the light field of a laser to confine and measure the motion of micron (or, eventually, submicron) size quartz nanosphere. This technique takes advantage of the modern development of optical tweezers, which has produced significant advances in biology and polymer science. By confining the nanospheres in vacuum and cooling them to low temperatures through active feedback of the trapping laser, the nanospheres can be decoupled from the room temperature environment, significantly reducing thermal and vibrational noise sources. The nanosphere oscillates in the harmonic potential of the optical trap, and its interaction with attractor masses positioned several microns away can be measured by studying the motion of the microsphere. The use of a light field in lieu of a mechanical spring affords much greater flexibility. Backgrounds can be mitigated through careful selection of the materials used for the attractors and the coating of the attractors with appropriate shielding layers. We have already cooled 5 micro-meter diameter microspheres to mK temperatures and demonstrated force sensitivities of 10^-17 N/sqrt(Hz). We have recently published a paper in Phys Rev Lett showing that the nanospheres can be easily discharged and setting a new limit on the existence of particles with very small fractional charges. In the course of this project we expect to be able to study the Casimir effect and, in general, residual electromagnetic interactions between the nanospheres and the attractors and perform a first competitive gravity measurement.
在微观距离上理解引力的本质是基础物理学中最重要的开放问题之一。尽管广义相对论为描述大距离引力效应提供了一个经过极好测试的框架,但它不能在量子效应普遍存在的小尺度上始终如一地描述引力。量子引力理论的发展是基础物理学的中心目标,对我们理解粒子物理和宇宙中似乎弥漫的“暗能量”的神秘本质有着广泛的影响。许多试图为重力提供一致的微观框架的理论(例如,那些涉及额外维度的理论)预测,重力可能在亚毫米距离偏离熟悉的平方反比定律。由于微小距离的引力相互作用的强度很小,这种偏差很难通过实验测量。这个项目代表了这样做的一种尝试。与此同时,尽管该计划的直接科学目标显然是现代物理学发展的核心,但对该技术的全面调查应该会丰富许多其他科学和技术领域。人们正在探索利用激光在真空中捕获和控制小物体的能力,以应用于量子控制、量子计算和检测小力的一般领域。此外,这项工作还需要详细了解微球和构成吸引体的材料之间的残余电磁相互作用,可以想象,这一领域的进展可能使新的技术能够测量诸如原子力显微镜等探测器尚无法接触到的表面的性质。最后,接触该项目的学生(研究生和本科生)将在许多科学和技术领域接受非常完整的培训。以前在这些距离尺度上的测量采用了源于真人大小的设备的技术,其中使用机械弹簧作为力传感器。在这个项目中,我们建议开发一种全新的技术,利用激光的光场来限制和测量微米(或最终亚微米)尺寸的石英纳米球的运动。这项技术利用了光学镊子的现代发展,这产生了生物学和聚合物科学的重大进步。通过将纳米球限制在真空中,并通过捕获激光的主动反馈将其冷却到较低的温度,纳米球可以与室温环境解耦,从而显著减少热和振动噪声源。纳米球在光阱的谐波势中振荡,通过研究微球的运动可以测量到它与几微米外的吸引子质量的相互作用。用光场代替机械弹簧提供了更大的灵活性。通过仔细选择吸引器所用的材料,并在吸引器上涂上适当的屏蔽层,可以减轻背景。我们已经将5微米直径的微球冷却到MK温度,并展示了10^-17N/Sqrt(赫兹)的力灵敏度。我们最近在《物理评论》杂志上发表了一篇论文,表明纳米球可以很容易地放电,并为具有非常小分数电荷的粒子的存在设定了新的限制。在这个项目的过程中,我们希望能够研究卡西米尔效应以及纳米球和吸引子之间的剩余电磁相互作用,并进行第一次竞争性重力测量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Giorgio Gratta其他文献

Search for neutrinoless double-β decay
寻找中微子双β衰变
  • DOI:
    10.1038/nature19473
  • 发表时间:
    2016-09-21
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Giorgio Gratta
  • 通讯作者:
    Giorgio Gratta

Giorgio Gratta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Giorgio Gratta', 18)}}的其他基金

Renewal of “Understanding Gravity at the Smallest Scale”
更新“理解最小尺度的重力”
  • 批准号:
    2108244
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Understanding Gravity at the Smallest Scale
了解最小尺度的重力
  • 批准号:
    1802952
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative research for Underground Science: Barium Tagging Techniques for EXO
地下科学合作研究:EXO 的钡标记技术
  • 批准号:
    1132382
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
International Workshop on Stopping and Manipulation of Ions (SMI-10) in Stanford, California.
离子停止和操纵国际研讨会 (SMI-10),加利福尼亚州斯坦福。
  • 批准号:
    1027975
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EXO: Technical Design for a Tonne-Scale Enriched Xenon DoubleBeta Decay Experiment
EXO:吨级富集氙双贝塔衰变实验的技术设计
  • 批准号:
    0918469
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Cooperative Agreement
Collaborative Research for DUSEL: Gas Xe R&D for EXO
DUSEL 合作研究:Gas Xe R
  • 批准号:
    0811053
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research for DUSEL: Barium tagging in liquid xenon for EXO
DUSEL 合作研究:EXO 液氙中的钡标记
  • 批准号:
    0652416
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
A 1000km3 Ultra-High Energy Neutrino Acoustic Detector
1000km3超高能中微子声探测器
  • 批准号:
    0457273
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
SGER: Acoustic Detection of Ultra-High Energy Cosmic Ray Neutrinos
SGER:超高能宇宙线中微子的声学探测
  • 批准号:
    0354497
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
  • 批准号:
    2334171
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Tracking flood waters over Australia using space gravity data
使用空间重力数据跟踪澳大利亚的洪水
  • 批准号:
    DP240102399
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Gravity Cartography Catalyst
重力制图催化剂
  • 批准号:
    10107128
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Small Business Research Initiative
SBIR Phase I: Artificial Gravity Stabilization System for Space Habitats
SBIR 第一阶段:太空栖息地人工重力稳定系统
  • 批准号:
    2335173
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Reaching new frontiers of quantum fields and gravity through deformations
通过变形达到量子场和引力的新前沿
  • 批准号:
    DP240101409
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
S-TGG: A novel Tidal Gravity Generator for renewable, shoreside energy in ports and harbours with high efficiency and low environmental impact
S-TGG:一种新型潮汐重力发生器,用于港口和港口的可再生岸边能源,效率高,环境影响低
  • 批准号:
    10092293
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
  • 批准号:
    2907441
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
CAREER: Towards realistic halo-scale constraints on the nature of dark matter and gravity
职业:对暗物质和引力的性质进行现实的晕尺度限制
  • 批准号:
    2338388
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Investigating the impacts of sea breeze and steep surface gravity waves on nearshore air-sea fluxes
职业:研究海风和陡峭的表面重力波对近岸海气通量的影响
  • 批准号:
    2340712
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了