Understanding Gravity at the Smallest Scale

了解最小尺度的重力

基本信息

  • 批准号:
    1802952
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

This award is supported by the Gravitational Physics and the Atomic, Molecular and Optical Experimental Physics programs. Understanding the nature of gravity at microscopic distances is one of the most important open problems in fundamental physics. Although General Relativity provides an extremely well-tested framework for describing gravitational effects at large distances, it cannot be consistently combined with the Standard Model of particle physics to provide a description of gravity at small scales. The development of a quantum theory of gravity that can be incorporated into the Standard Model is a central goal of fundamental physics, with broad implications for our understanding of particle physics and the mysterious nature of the "dark energy" that appears to permeate the universe. Many theories attempting to provide a consistent microscopic framework for gravity (e.g., those involving extra dimensions) predict that gravity could deviate from the familiar inverse square law at distances shorter than a mm. Such deviations are extremely difficult to measure experimentally due to the small strength of gravitational interactions at microscopic distances. The studies described here attempt to gain insights into the realm of microscopic gravitational forces with a novel experimental setup. Additionally, the research will enhance the training of students in STEM areas which are vital for the future of the nation.Previous measurements at these distance scales have employed techniques derived from human-size devices in which mechanical springs are used as force sensors. This group has developed a drastically new technique, using the light field of a laser to confine and measure the motion of micron (or, eventually, submicron)-size quartz microsphere. Previous studies undertaken by this group include the most sensitive search to date for fractional charges over 4 orders of magnitude smaller than the charge of an electron. This is a by-product of having to discharge the microspheres and check that they are really neutral. The group has completed the construction of a new trap in which the entire microsphere position readout is carried out interferometrically. This is a first in this area of research and will be applicable to other areas, e.g. biology or polymer science. The studies supported by this grant include exploring the possibility of spinning the microspheres, something that could reduce the background of the gravity measurements and may also lead to the development of nanogyroscopes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项由引力物理和原子、分子和光学实验物理项目支持。在微观距离上理解引力的本质是基础物理学中最重要的开放问题之一。尽管广义相对论为描述大范围的引力效应提供了一个经过极好测试的框架,但它不能与粒子物理的标准模型相结合,以提供小尺度下的引力描述。发展可以并入标准模型的量子引力理论是基础物理的核心目标,对我们理解粒子物理和似乎弥漫在宇宙中的“暗能量”的神秘本质有着广泛的影响。许多试图为重力提供一致的微观框架的理论(例如,那些涉及额外维度的理论)预测,重力可能在距离小于1毫米时偏离熟悉的平方反比定律。由于微小距离的引力相互作用的强度很小,这种偏差很难通过实验测量。这里描述的研究试图通过一种新颖的实验装置来深入了解微观引力的领域。此外,这项研究还将加强对STEM领域学生的培训,这些领域对国家的未来至关重要。以前在这些距离尺度上的测量采用了源于真人大小的设备的技术,其中使用机械弹簧作为力传感器。该小组开发了一项全新的技术,利用激光的光场来限制和测量微米(或最终亚微米)大小的石英微球的运动。该小组之前进行的研究包括迄今为止最灵敏的搜索,寻找比电子电荷小4个数量级以上的分数电荷。这是不得不释放微球并检查它们是否真的是中性的副产品。该小组已经完成了一个新的陷阱的建造,在这个陷阱中,整个微球的位置读出是以干涉测量的方式进行的。这在这一研究领域是第一次,并将适用于其他领域,例如生物学或聚合物科学。这笔资金支持的研究包括探索旋转微球的可能性,这可能会减少重力测量的背景,还可能导致纳米陀螺仪的发展。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electrically driven, optically levitated microscopic rotors
  • DOI:
    10.1103/physreva.99.041802
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Alexander D. Rider;Charles P. Blakemore;A. Kawasaki;N. Priel;Sandip Roy;G. Gratta
  • 通讯作者:
    Alexander D. Rider;Charles P. Blakemore;A. Kawasaki;N. Priel;Sandip Roy;G. Gratta
High sensitivity, levitated microsphere apparatus for short-distance force measurements
  • DOI:
    10.1063/5.0011759
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Kawasaki, Akio;Fieguth, Alexander;Gratta, Giorgio
  • 通讯作者:
    Gratta, Giorgio
Precision Mass and Density Measurement of Individual Optically Levitated Microspheres
  • DOI:
    10.1103/physrevapplied.12.024037
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Charles P. Blakemore;Alexander D. Rider;Sandip Roy;A. Fieguth;A. Kawasaki;N. Priel;G. Gratta
  • 通讯作者:
    Charles P. Blakemore;Alexander D. Rider;Sandip Roy;A. Fieguth;A. Kawasaki;N. Priel;G. Gratta
Three-dimensional force-field microscopy with optically levitated microspheres
具有光学悬浮微球的三维力场显微镜
  • DOI:
    10.1103/physreva.99.023816
  • 发表时间:
    2019-02-08
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Blakemore, Charles P.;Rider, Alexander D.;Gratta, Giorgio
  • 通讯作者:
    Gratta, Giorgio
Absolute pressure and gas species identification with an optically levitated rotor
  • DOI:
    10.1116/1.5139638
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Blakemore, Charles P.;Martin, Denzal;Gratta, Giorgio
  • 通讯作者:
    Gratta, Giorgio
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Giorgio Gratta其他文献

Search for neutrinoless double-β decay
寻找中微子双β衰变
  • DOI:
    10.1038/nature19473
  • 发表时间:
    2016-09-21
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Giorgio Gratta
  • 通讯作者:
    Giorgio Gratta

Giorgio Gratta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Giorgio Gratta', 18)}}的其他基金

Renewal of “Understanding Gravity at the Smallest Scale”
更新“理解最小尺度的重力”
  • 批准号:
    2108244
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Understanding Gravity at the Smallest Scale
了解最小尺度的重力
  • 批准号:
    1502156
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative research for Underground Science: Barium Tagging Techniques for EXO
地下科学合作研究:EXO 的钡标记技术
  • 批准号:
    1132382
  • 财政年份:
    2012
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
International Workshop on Stopping and Manipulation of Ions (SMI-10) in Stanford, California.
离子停止和操纵国际研讨会 (SMI-10),加利福尼亚州斯坦福。
  • 批准号:
    1027975
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EXO: Technical Design for a Tonne-Scale Enriched Xenon DoubleBeta Decay Experiment
EXO:吨级富集氙双贝塔衰变实验的技术设计
  • 批准号:
    0918469
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Cooperative Agreement
Collaborative Research for DUSEL: Gas Xe R&D for EXO
DUSEL 合作研究:Gas Xe R
  • 批准号:
    0811053
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research for DUSEL: Barium tagging in liquid xenon for EXO
DUSEL 合作研究:EXO 液氙中的钡标记
  • 批准号:
    0652416
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
A 1000km3 Ultra-High Energy Neutrino Acoustic Detector
1000km3超高能中微子声探测器
  • 批准号:
    0457273
  • 财政年份:
    2005
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
SGER: Acoustic Detection of Ultra-High Energy Cosmic Ray Neutrinos
SGER:超高能宇宙线中微子的声学探测
  • 批准号:
    0354497
  • 财政年份:
    2003
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Tracking flood waters over Australia using space gravity data
使用空间重力数据跟踪澳大利亚的洪水
  • 批准号:
    DP240102399
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
  • 批准号:
    2334171
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Gravity Cartography Catalyst
重力制图催化剂
  • 批准号:
    10107128
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Small Business Research Initiative
SBIR Phase I: Artificial Gravity Stabilization System for Space Habitats
SBIR 第一阶段:太空栖息地人工重力稳定系统
  • 批准号:
    2335173
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Reaching new frontiers of quantum fields and gravity through deformations
通过变形达到量子场和引力的新前沿
  • 批准号:
    DP240101409
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
S-TGG: A novel Tidal Gravity Generator for renewable, shoreside energy in ports and harbours with high efficiency and low environmental impact
S-TGG:一种新型潮汐重力发生器,用于港口和港口的可再生岸边能源,效率高,环境影响低
  • 批准号:
    10092293
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Collaborative R&D
Clocks and singularities in quantum gravity and quantum cosmology
量子引力和量子宇宙学中的时钟和奇点
  • 批准号:
    2907441
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
CAREER: Towards realistic halo-scale constraints on the nature of dark matter and gravity
职业:对暗物质和引力的性质进行现实的晕尺度限制
  • 批准号:
    2338388
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Investigating the impacts of sea breeze and steep surface gravity waves on nearshore air-sea fluxes
职业:研究海风和陡峭的表面重力波对近岸海气通量的影响
  • 批准号:
    2340712
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了