Collaborative project: CSEDI- Understanding Si and Fe differentiation in Earth's mantle and core through experimental and theoretical research in geochemistry and mineral physics

合作项目:CSEDI-通过地球化学和矿物物理学的实验和理论研究了解地幔和地核中的硅和铁分异

基本信息

  • 批准号:
    1502594
  • 负责人:
  • 金额:
    $ 22.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-15 至 2020-09-30
  • 项目状态:
    已结题

项目摘要

To first order, the Earth is divided into three concentric shells of different nature: the metallic core, the rocky mantle, and the fluid atmosphere/hydrosphere. While samples are available from the mantle and atmosphere/hydrosphere, the nature and composition of the core remain poorly understood. In particular, the core is known to be less dense than pure iron-nickel alloy, indicating that another light element is present in the core, possibly oxygen, silicium, or sulfur. The conditions (pressure and temperature) under which Earth's core formed and the nature of the light element in Earth's core are two major unresolved questions in planetary sciences. Because no core samples are directly available for study, scientists rely on remote seismic observations or other indirect methods to address those questions. In the proposed work, the approaches of geochemistry (the chemistry of the Earth), mineral physics (solid state physics applied to natural materials), and computational techniques will be combined to set limits on the temperature condition during core formation and the nature of the light element in Earth's core. This will be achieved by examining the extent to which different isotopic flavors of silicon and iron were partitioned between metal and silicate when the core formed. The work will involve synthesizing minerals in the laboratory and compressing them to pressure conditions relevant to the deep Earth by confining the samples between two diamonds, measuring the strength of the iron bonds in those minerals at a synchrotron source that produces very energetic X-rays, and examining, through computer calculations, the behavior of matter under high pressure and temperature. This work can impact many fields of science, ranging from the origin of Earth's dynamo to characterization of extrasolar planets through measurement of their mass. All PIs will actively engage in training and educating graduate students, undergraduate students, and postdocs in the proposed research projects. The PIs will continue developing SciPhon, a user-friendly, free software for NRIXS data reduction. This program will be made available to various communities studying different aspects of NRIXS, including geochemistry, mineral physics, material sciences, condensed matter physics, and biochemistry. All PIs will be actively involved in outreach programs including the UTeach Outreach Program that conducts academic summer camps for underrepresented K-12 kids from the Austin and southwest Texas area. The mass of the Earth and its accretion history are such that core-mantle differentiation was probably unavoidable but considerable uncertainties remain as to how and when this took place. Our limited understanding of this major event arises from our lack of sampling of Earth's deep interior. Scientists have devised indirect approaches to address this shortcoming by relying on (1) mineral physics experiments to reproduce the high pressure-temperature conditions prevailing in Earth's interior, (2) theoretical calculations to mimic those same conditions, and (3) geochemical measurements of the composition of mantle rocks to search for telltale signatures of core formation. These strongly interweaved approaches have led to significant progress but first-order unanswered questions remain, such as under what pressure-temperature conditions did the core form, what is the nature of the light element in the core, and did core formation fractionate Si and Fe isotopes. Terrestrial basalts have non-chondritic Si and Fe isotopic compositions, which could reflect partitioning of these elements into the core, although other interpretations exist. The investigators propose to establish Si and Fe isotope fractionation factors using high-pressure nuclear resonant inelastic X-ray scattering (NRIXS) and theoretical calculations at deep mantle conditions via collaborative approaches in geochemistry (Dauphas), theoretical ab initio calculations (Wentzcovitch), and experimental mineral physics (Lin). The derived force constants of Si and Fe bonds in basaltic glasses, lower-mantle minerals (bridgmanite and ferropericlase), and Fe alloys will allow us to build a deep-Earth geochemical model to evaluate if the specific Si and Fe isotopic compositions of the silicate Earth reflect core partitioning, and if they do, put constraints on important aspects of core formation such as temperature or the presence of Si as a light element in the core. The experimental results will serve as a benchmark for ab initio calculations of Si and Fe isotopic fractionation between relevant metal and silicate phases at high pressure and temperature. The theoretical work will in turn guide and refine the experimental and geochemical modelling efforts, focusing in particular on nuclear resonant measurements, force constant derivations, anharmonic and spin crossover effects. The exchanges and feedbacks between geochemists and experimental and theoretical physicists involved in this project will provide a holistic view of Si and Fe isotopic fractionation during core formation.
首先,地球被分为三个不同性质的同心壳:金属核,岩石地幔和流体大气圈/水圈。虽然可以从地幔和大气圈/水圈获得样品,但对地核的性质和组成仍然知之甚少。特别是,已知核心的密度低于纯铁镍合金,表明核心中存在另一种轻元素,可能是氧,硅或硫。地核形成的条件(压力和温度)和地核中轻元素的性质是行星科学中两个尚未解决的主要问题。由于没有直接用于研究的岩心样本,科学家们依靠远程地震观测或其他间接方法来解决这些问题。在拟议的工作中,地球化学(地球化学),矿物物理学(应用于天然材料的固态物理学)和计算技术的方法将结合起来,以确定核心形成期间的温度条件和地球核心中轻元素的性质。这将通过检查在核心形成时硅和铁的不同同位素在金属和硅酸盐之间分配的程度来实现。这项工作将涉及在实验室合成矿物,并通过将样品限制在两个钻石之间,将它们压缩到与地球深部相关的压力条件下,在产生高能X射线的同步加速器源上测量这些矿物中的铁键强度,并通过计算机计算检查高压和高温下物质的行为。这项工作可以影响许多科学领域,从地球发电机的起源到通过测量太阳系外行星的质量来描述它们的特征。 所有PI将积极参与培训和教育研究生,本科生和博士后在拟议的研究项目。 PI将继续开发SciPhon,这是一款用户友好的免费软件,用于NRIXS数据简化。该计划将提供给研究NRIXS不同方面的各个社区,包括地球化学、矿物物理学、材料科学、凝聚态物理学和生物化学。 所有的PI将积极参与外展计划,包括UTeach外展计划,该计划为来自奥斯汀和德克萨斯州西南部地区的代表性不足的K-12儿童举办学术夏令营。 地球的质量和它的吸积历史是这样的,核幔分化可能是不可避免的,但相当大的不确定性仍然是如何以及何时发生的。我们对这一重大事件的了解有限,这是因为我们缺乏对地球内部深处的取样。科学家们设计了间接的方法来解决这个缺点,依靠(1)矿物物理实验来重现地球内部普遍存在的高压-温度条件,(2)理论计算来模拟这些相同的条件,(3)地幔岩石成分的地球化学测量来寻找核心形成的迹象。这些强烈交织的方法导致了重大进展,但一阶未回答的问题仍然存在,例如在什么压力-温度条件下核心形成,核心中轻元素的性质是什么,以及核心形成的裂变Si和Fe同位素。陆地玄武岩具有非玄武岩的Si和Fe同位素组成,这可能反映了这些元素进入核心的分区,尽管存在其他解释。研究人员建议使用高压核共振非弹性X射线散射(NRIXS)和理论计算,通过地球化学(Daufas),理论从头计算(Wentzcovitch)和实验矿物物理学(Lin)的合作方法,在深地幔条件下建立Si和Fe同位素分馏因子。下地幔矿物玄武玻璃中Si和Fe键的力常数(硼镁石和铁方镁石)和铁合金将使我们能够建立一个深地球地球化学模型,以评估硅酸盐地球的特定Si和Fe同位素组成是否反映核心分配,如果是这样,限制了核心形成的重要方面,例如温度或核心中作为轻元素的Si的存在。实验结果将作为一个基准的从头计算的硅和铁同位素分馏相关的金属和硅酸盐相在高压和高温。理论工作将反过来指导和完善实验和地球化学建模工作,特别侧重于核共振测量,力常数推导,非谐和自旋交叉效应。参与该项目的地球化学家和实验及理论物理学家之间的交流和反馈将提供对岩芯形成过程中Si和Fe同位素分馏的整体看法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jung-Fu Lin其他文献

Elasticity of single-crystal olivine at high pressures and temperatures
单晶橄榄石在高压和高温下的弹性
  • DOI:
    10.1016/j.epsl.2015.06.045
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Zhu Mao;Dawei Fan;Jung-Fu Lin;Jing Yang;Sergey N. Tkachev;Kirill Zhuravlev;Vitali B. Prakapenka
  • 通讯作者:
    Vitali B. Prakapenka
鉄系超伝導体K_xFe_<2-y>Se_2の高圧下でのX線回折と共鳴X線発光分光測定
高压铁基超导体K_xFe_<2-y>Se_2的X射线衍射和共振X射线发射光谱测量
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山本義哉;太田雄;山岡人志;Jung-Fu Lin;石井啓文;平岡望;Ku-Ding Tsuei;藤田秀紀;加賀山朋子;清水克哉;田中将嗣;岡崎宏之;尾崎壽紀;高野義彦;水木純一郎
  • 通讯作者:
    水木純一郎
Effects of antiferromagnetic short interaction in elastic spin-crossover systems
弹性自旋交叉系统中反铁磁短相互作用的影响
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    舌古裕美子;山本義哉;川瀬里美;山岡人志;池田陽一; Fabio Strigari;Andrea Severing;田島史郷;西岡 孝;Jung-Fu Lin;平岡 望;石井啓文;Ku-Ding Tsuei;有田将司;仲武昌史;島田賢也;生天目博文;谷口雅樹;水木純一郎;S. Miyashita
  • 通讯作者:
    S. Miyashita
CeFe2のCe L3端X線吸収および共鳴X線発光スペクトルにおけるCe5dバンド状態密度と内殻正孔の効果
Ce5d能带态密度和核心空穴对CeFe2的Ce L3边X射线吸收和共振X射线发射光谱的影响
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山岡人志;Ignace Jarrige,辻井直人;今井基晴;Jung-Fu Lin;松波雅治5江口律子;有田将司;島田賢也;生天目博文;谷口雅樹;田口宗孝;仙波泰徳;大橋治彦,平岡望、石井啓文、Ku-Ding Tsuei;小谷章雄
  • 通讯作者:
    小谷章雄
First-principles calculation of temperature dependent electrical resistivity and Seebeck coefficient
温度相关电阻率和塞贝克系数的第一原理计算
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山岡人志;山本義哉;吉田雅洋;石田茂之;土屋佳則;竹下 直;Jung-Fu Lin;平岡 望;石井啓文;Ku-Ding Tsuei ;水木純一郎;S. Kou and H. Akai
  • 通讯作者:
    S. Kou and H. Akai

Jung-Fu Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jung-Fu Lin', 18)}}的其他基金

Collaborative Research: CSEDI: Understanding the Role of Hydrogen and Melting in the Water Transport Across the Transition Zone-Lower Mantle Boundary
合作研究:CSEDI:了解氢和熔化在跨过渡带-下地幔边界的水传输中的作用
  • 批准号:
    2001381
  • 财政年份:
    2020
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Electrical and Thermal Transport in Iron and Iron Alloys at Core Conditions and its Effects on the Geodynamo and Thermal Earth History
CSEDI 合作研究:核心条件下铁和铁合金的电和热传输及其对地球发电机和热地球历史的影响
  • 批准号:
    1901801
  • 财政年份:
    2019
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Standard Grant
High Pressure-Temperature Single-Crystal Elasticity of the Lower-Mantle Bridgmanite
下地幔布里奇曼石的高压-高温单晶弹性
  • 批准号:
    1916941
  • 财政年份:
    2019
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Continuing Grant
Elasticity and Spin Transitions of Iron in the Earth's Lower Mantle
地球下地幔中铁的弹性和自旋跃迁
  • 批准号:
    1446946
  • 财政年份:
    2015
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Continuing Grant
Acquisition of an Impulsive Stimulated Light Scattering (ISLS) system for elasticity and thermal conductivity studies
获取脉冲受激光散射 (ISLS) 系统用于弹性和导热性研究
  • 批准号:
    1053446
  • 财政年份:
    2012
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Continuing Grant
CAREER: Phase Diagrams and Elasticity of Iron Alloys in the Earth's Core
职业:地核铁合金的相图和弹性
  • 批准号:
    1056670
  • 财政年份:
    2011
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Continuing Grant
Electronic Spin Transition of Iron in the Earth's Lower Mantle
地球下地幔中铁的电子自旋跃迁
  • 批准号:
    0838221
  • 财政年份:
    2009
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Continuing Grant

相似国自然基金

CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
  • 批准号:
    82370798
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
  • 批准号:
    82371144
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
CD8+T细胞亚群在抗MDA5抗体阳性皮肌炎中的致病机制研究
  • 批准号:
    82371805
  • 批准年份:
    2023
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
巨噬细胞通过Piezo1感知组织硬度限制肝脏纤维化的作用机制研究
  • 批准号:
    82371760
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
OBSL1功能缺失导致多指(趾)畸形的分子机制及其临床诊断价值
  • 批准号:
    82372328
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
亚洲人群的新基因和剪接外显子的发现- 通过分析和验证HapMap其他人群的转录组测序(RNA-seq)数据
  • 批准号:
    31171213
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

HSI Pilot Project: Institutionalizing a Teaching and Learning Excellence Community of Practice focused on First-Year Student Success in STEM
HSI 试点项目:将卓越教学和学习实践社区制度化,重点关注一年级学生在 STEM 方面的成功
  • 批准号:
    2345247
  • 财政年份:
    2024
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Leveraging Social Psychology Interventions to Promote First Year STEM Persistence
HSI 实施和评估项目:利用社会心理学干预措施促进第一年 STEM 的坚持
  • 批准号:
    2345273
  • 财政年份:
    2024
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
  • 批准号:
    2345355
  • 财政年份:
    2024
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Continuing Grant
HSI Implementation and Evaluation Project: Blending Socioeconomic-Inclusive Design into Undergraduate Computing Curricula to Build a Larger Computing Workforce
HSI 实施和评估项目:将社会经济包容性设计融入本科计算机课程,以建立更大规模的计算机队伍
  • 批准号:
    2345334
  • 财政年份:
    2024
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Continuing Grant
Project Incubation: Training Undergraduates in Collaborative Research Ethics
项目孵化:培养本科生合作研究伦理
  • 批准号:
    2316154
  • 财政年份:
    2024
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Standard Grant
NESP MaC Project 4.5– Developing an Integrated Pest Management Framework for Feral Pigs in Coastal Environments 2024-2026 (NAILSMA)
NESP MaC 项目 4.5 — 为 2024-2026 年沿海环境中的野猪制定综合害虫管理框架 (NAILSMA)
  • 批准号:
    global : ba1e00f0-9953-4c17-b990-ba7aed84ce07
  • 财政年份:
    2024
  • 资助金额:
    $ 22.63万
  • 项目类别:
Women’s Careers in STEM: a Multi-method Project from an Indigenous Perspective
STEM 领域的女性职业:从原住民角度看的多方法项目
  • 批准号:
    24K16421
  • 财政年份:
    2024
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
e-health tools to promote Equality in Quality of Life for childhood to young adulthood cancer patients, survivors and their families - a PanEuropean project supported by PanCare and Harmonic consortia
电子医疗工具可促进儿童到成年癌症患者、幸存者及其家人的生活质量平等 - 这是由 PanCare 和 Harmonic 联盟支持的 PanEuropean 项目
  • 批准号:
    10098114
  • 财政年份:
    2024
  • 资助金额:
    $ 22.63万
  • 项目类别:
    EU-Funded
Net Zero Rail Product Commercialisation Project
净零轨产品商业化项目
  • 批准号:
    10098199
  • 财政年份:
    2024
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Collaborative R&D
Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
  • 批准号:
    10099966
  • 财政年份:
    2024
  • 资助金额:
    $ 22.63万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了