High Pressure-Temperature Single-Crystal Elasticity of the Lower-Mantle Bridgmanite

下地幔布里奇曼石的高压-高温单晶弹性

基本信息

  • 批准号:
    1916941
  • 负责人:
  • 金额:
    $ 41.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Earth's lower mantle extends from 670 km depth down to the core-mantle boundary, 2900 km deep. There, pressure and temperature exceed 1.3 million atm and 3500 K (5840 degree Fahrenheit). Understanding its properties is critical to constrain the planet dynamics. The lower mantle conducts heat away from the outer core. This contributes to power the Earth's magnetic field which shields us from the solar wind. Furthermore, thermal convection in the mantle drives plate tectonics and associated hazards, such as earthquakes and volcanic eruptions. Seismology, the study of seismic (elastic) waves, allows to observe directly the lower-mantle structures. But their interpretation requires knowledge of the elastic properties of the constitutive minerals. Bridgmanite accounts for more than 3/4th of the volume of the lower mantle, making it the most abundant mineral in the Earth. It is also of crucial interest when investigating lower-mantle properties. Here, the team quantifies experimentally the elastic properties of bridgmanite at the extreme conditions of the deep Earth. Coupling high pressure devices and state-of-the-art analytical techniques, they provide data allowing the interpretation of lower-mantle structures; notably that of large enigmatic provinces showing low seismic shear velocities. The project has strong implications in Seismology and broad impacts in Geodynamics. It also provides support and training in Mineral Physics for several graduate and undergraduate students, as well as educational outreach toward local elementary and middle schools. In this study, the team synthesize large single crystals of (Al,Fe)-bearing bridgmanite in the laboratory. Crystal properties are investigated at extreme conditions of pressure and temperature in the diamond-anvil cell. This apparatus generates high pressures at the tip of two opposing diamonds. The high temperatures are obtained by external heating or using focused laser beams. Crystal elastic properties are measured in situ using a combination of laboratory Brillouin and impulsive stimulated light scattering, as well as X-ray diffraction at national synchrotron facilities. This is achievable because the team is developing new technology in time-resolved impulsive laser spectroscopy. These new techniques will be shared with the community for future studies of material properties at extreme conditions. The researchers use the obtained data to constrain bridgmanite full elastic moduli as a function of pressure, temperature and of its contents in iron and aluminum. Extrapolation of the results to conditions relevant to the lower mantle, as well as modeling, allows interpreting seismological observations. The project outcomes further the understanding of seismic velocities, temperature profiles and chemical compositions in the deep Earth.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球的下地幔从670公里深处延伸到2900公里深处的核幔边界。在那里,压力和温度超过130万大气压和3500 K(5840华氏度)。了解它的性质对于约束行星动力学至关重要。下地幔将热量从外核传导出去。这有助于为地球磁场提供动力,使我们免受太阳风的影响。此外,地幔中的热对流驱动板块构造和相关的灾害,如地震和火山爆发。地震学,研究地震(弹性)波,可以直接观察下地幔结构。但它们的解释需要了解构成矿物的弹性性质。Bridgmanite占下地幔体积的3/4以上,使其成为地球上最丰富的矿物。在研究下地幔性质时,它也是至关重要的。在这里,该团队通过实验量化了布里奇曼石在地球深部极端条件下的弹性特性。结合高压设备和最先进的分析技术,它们提供的数据可以解释下地幔结构,特别是显示低地震剪切速度的大型神秘省份。该项目在地震学和地球动力学的广泛影响有很大的影响。它还为一些研究生和本科生提供矿物物理学方面的支持和培训,以及对当地小学和中学的教育推广。在这项研究中,该团队在实验室中合成了含(Al,Fe)的bridgmanite的大单晶。在金刚石压砧单元中,在极端的压力和温度条件下研究晶体性质。该装置在两个相对的金刚石的尖端处产生高压。通过外部加热或使用聚焦激光束获得高温。晶体的弹性性能测量原位使用实验室布里渊和脉冲受激光散射,以及X射线衍射在国家同步加速器设施的组合。这是可以实现的,因为该团队正在开发时间分辨脉冲激光光谱学的新技术。这些新技术将与社区共享,用于未来极端条件下材料特性的研究。研究人员利用获得的数据来约束作为压力、温度及其在铁和铝中含量的函数的桥镁石全弹性模量。将结果外推到与下地幔相关的条件,以及建模,可以解释地震观测。该项目的成果进一步了解地震速度,温度分布和地球深部的化学成分。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlinear effects of hydration on high-pressure sound velocities of rhyolitic glasses
水合作用对流纹岩玻璃高压声速的非线性影响
  • DOI:
    10.2138/am-2021-7597
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Gu, Jesse T.;Fu, Suyu;Gardner, James E.;Yamashita, Shigeru;Okuchi, Takuo;Lin, Jung-Fu
  • 通讯作者:
    Lin, Jung-Fu
Atomistic insight into the ferroelastic post-stishovite transition by high-pressure single-crystal X-ray diffraction
  • DOI:
    10.2138/am-2022-8458
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Yanyao Zhang;S. Chariton;Jiaming He;S. Fu;Fang Xu;V. Prakapenka;Jung‐Fu Lin
  • 通讯作者:
    Yanyao Zhang;S. Chariton;Jiaming He;S. Fu;Fang Xu;V. Prakapenka;Jung‐Fu Lin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jung-Fu Lin其他文献

Elasticity of single-crystal olivine at high pressures and temperatures
单晶橄榄石在高压和高温下的弹性
  • DOI:
    10.1016/j.epsl.2015.06.045
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Zhu Mao;Dawei Fan;Jung-Fu Lin;Jing Yang;Sergey N. Tkachev;Kirill Zhuravlev;Vitali B. Prakapenka
  • 通讯作者:
    Vitali B. Prakapenka
鉄系超伝導体K_xFe_<2-y>Se_2の高圧下でのX線回折と共鳴X線発光分光測定
高压铁基超导体K_xFe_<2-y>Se_2的X射线衍射和共振X射线发射光谱测量
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山本義哉;太田雄;山岡人志;Jung-Fu Lin;石井啓文;平岡望;Ku-Ding Tsuei;藤田秀紀;加賀山朋子;清水克哉;田中将嗣;岡崎宏之;尾崎壽紀;高野義彦;水木純一郎
  • 通讯作者:
    水木純一郎
Effects of antiferromagnetic short interaction in elastic spin-crossover systems
弹性自旋交叉系统中反铁磁短相互作用的影响
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    舌古裕美子;山本義哉;川瀬里美;山岡人志;池田陽一; Fabio Strigari;Andrea Severing;田島史郷;西岡 孝;Jung-Fu Lin;平岡 望;石井啓文;Ku-Ding Tsuei;有田将司;仲武昌史;島田賢也;生天目博文;谷口雅樹;水木純一郎;S. Miyashita
  • 通讯作者:
    S. Miyashita
CeFe2のCe L3端X線吸収および共鳴X線発光スペクトルにおけるCe5dバンド状態密度と内殻正孔の効果
Ce5d能带态密度和核心空穴对CeFe2的Ce L3边X射线吸收和共振X射线发射光谱的影响
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山岡人志;Ignace Jarrige,辻井直人;今井基晴;Jung-Fu Lin;松波雅治5江口律子;有田将司;島田賢也;生天目博文;谷口雅樹;田口宗孝;仙波泰徳;大橋治彦,平岡望、石井啓文、Ku-Ding Tsuei;小谷章雄
  • 通讯作者:
    小谷章雄
First-principles calculation of temperature dependent electrical resistivity and Seebeck coefficient
温度相关电阻率和塞贝克系数的第一原理计算
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山岡人志;山本義哉;吉田雅洋;石田茂之;土屋佳則;竹下 直;Jung-Fu Lin;平岡 望;石井啓文;Ku-Ding Tsuei ;水木純一郎;S. Kou and H. Akai
  • 通讯作者:
    S. Kou and H. Akai

Jung-Fu Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jung-Fu Lin', 18)}}的其他基金

Collaborative Research: CSEDI: Understanding the Role of Hydrogen and Melting in the Water Transport Across the Transition Zone-Lower Mantle Boundary
合作研究:CSEDI:了解氢和熔化在跨过渡带-下地幔边界的水传输中的作用
  • 批准号:
    2001381
  • 财政年份:
    2020
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Electrical and Thermal Transport in Iron and Iron Alloys at Core Conditions and its Effects on the Geodynamo and Thermal Earth History
CSEDI 合作研究:核心条件下铁和铁合金的电和热传输及其对地球发电机和热地球历史的影响
  • 批准号:
    1901801
  • 财政年份:
    2019
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Standard Grant
Collaborative project: CSEDI- Understanding Si and Fe differentiation in Earth's mantle and core through experimental and theoretical research in geochemistry and mineral physics
合作项目:CSEDI-通过地球化学和矿物物理学的实验和理论研究了解地幔和地核中的硅和铁分异
  • 批准号:
    1502594
  • 财政年份:
    2015
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Continuing Grant
Elasticity and Spin Transitions of Iron in the Earth's Lower Mantle
地球下地幔中铁的弹性和自旋跃迁
  • 批准号:
    1446946
  • 财政年份:
    2015
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Continuing Grant
Acquisition of an Impulsive Stimulated Light Scattering (ISLS) system for elasticity and thermal conductivity studies
获取脉冲受激光散射 (ISLS) 系统用于弹性和导热性研究
  • 批准号:
    1053446
  • 财政年份:
    2012
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Continuing Grant
CAREER: Phase Diagrams and Elasticity of Iron Alloys in the Earth's Core
职业:地核铁合金的相图和弹性
  • 批准号:
    1056670
  • 财政年份:
    2011
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Continuing Grant
Electronic Spin Transition of Iron in the Earth's Lower Mantle
地球下地幔中铁的电子自旋跃迁
  • 批准号:
    0838221
  • 财政年份:
    2009
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Continuing Grant

相似海外基金

GOALI: Manufacturing Large, Diamond Single Crystals via High-Pressure, High-Temperature Growth
目标:通过高压、高温生长制造大型金刚石单晶
  • 批准号:
    2308877
  • 财政年份:
    2023
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Standard Grant
EAGER: Low-temperature Coupling of Methane Surrogates over Single Atom Catalysts: Elucidation of Elementary Reactions for C-C Bond Formation
EAGER:单原子催化剂上甲烷替代物的低温偶联:阐明 C-C 键形成的基本反应
  • 批准号:
    2328552
  • 财政年份:
    2023
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Standard Grant
Development of a novel low temperature single step technology for direct liquefaction of methane-rich gas streams to oxygenated hydrocarbon fuels
开发一种新型低温单步技术,将富甲烷气流直接液化为含氧烃燃料
  • 批准号:
    RGPIN-2018-03955
  • 财政年份:
    2022
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Discovery Grants Program - Individual
Development of low-temperature magnetization measurement system for small single crystals
小单晶低温磁化强度测量系统的研制
  • 批准号:
    22K18681
  • 财政年份:
    2022
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Study of temperature resistant mechanisms of papain enzymes by single-molecule measurements
单分子测量研究木瓜蛋白酶的耐温机制
  • 批准号:
    21K06115
  • 财政年份:
    2021
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The development of molecular design to inhibit the amyloid fibrillation by inhibiting the reversible oligomerization at high temperature with a single residue mutation
通过单残基突变抑制高温可逆寡聚化来抑制淀粉样蛋白纤维化的分子设计的发展
  • 批准号:
    21K15049
  • 财政年份:
    2021
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a novel low temperature single step technology for direct liquefaction of methane-rich gas streams to oxygenated hydrocarbon fuels
开发一种新型低温单步技术,将富甲烷气流直接液化为含氧烃燃料
  • 批准号:
    RGPIN-2018-03955
  • 财政年份:
    2021
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Discovery Grants Program - Individual
Room-Temperature Single Atom Silicon Quantum Electronics
室温单原子硅量子电子学
  • 批准号:
    EP/V027700/1
  • 财政年份:
    2021
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Research Grant
Room-Temperature Single Atom Silicon Quantum Electronics
室温单原子硅量子电子学
  • 批准号:
    EP/V030035/1
  • 财政年份:
    2021
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Research Grant
Characterization of single and laminated electrical steel sheets under static and cyclic loads at room and elevated temperature
室温和高温静态和循环载荷下单层和层压电工钢板的表征
  • 批准号:
    556432-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 41.53万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了