Quiver representations, singularity categories, and monoidal structures

Quiver 表示、奇点类别和幺半群结构

基本信息

  • 批准号:
    219520899
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Priority Programmes
  • 财政年份:
    2012
  • 资助国家:
    德国
  • 起止时间:
    2011-12-31 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

Representations of algebras are studied from various directions, involving monoidal and triangulated structures. One goal is to describe in terms of generators and relations representation rings and monoids of projections functors for representations of quivers. Another goal is to classify thick and localising subcategories of triangulated singularity categories. This involves continuous and discrete parametrisations, reflecting the existing monoidal or combinatorial structures. The choice of singularity categories is motivated by connections with the representation theory of finite groups, the study of matrix factorisations, and applications in algebraic geometry, including weighted projective lines.
代数的表示从不同的方向进行了研究,涉及monoidal和三角结构。一个目标是描述的发电机和关系表示环和幺半群的投影函子表示的箭。另一个目标是分类厚和局部化的子类别的三角奇异类别。这涉及连续和离散的参数化,反映现有的monoidal或组合结构。奇点范畴的选择是由有限群的表示论、矩阵分解的研究以及代数几何中的应用(包括加权射影线)所激发的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Henning Krause其他文献

Professor Dr. Henning Krause的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Henning Krause', 18)}}的其他基金

The telescope conjecture for derived categories arising in representation theory
表示论中出现的派生范畴的望远镜猜想
  • 批准号:
    126176653
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Die Teleskopvermutung aus der stabilen Homotopietheorie soll im algebraischen Kontext untersucht werden
来自稳定同伦理论的望远镜猜想将在代数背景下进行检验
  • 批准号:
    5436113
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
  • 批准号:
    MR/Y033884/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Fellowship
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
  • 批准号:
    2401384
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
  • 批准号:
    2331590
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
  • 批准号:
    2337451
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Native, non-native or artificial phonetic content for pronunciation education: representations and perception in the case of L2 French
用于发音教育的母语、非母语或人工语音内容:以法语 L2 为例的表征和感知
  • 批准号:
    24K00093
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Unlocking the secrets of modular representations
解开模块化表示的秘密
  • 批准号:
    FL230100256
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Australian Laureate Fellowships
Understanding mental health in the UK welfare system: representations of distress among benefit claimants and implications for assessment and support
了解英国福利体系中的心理健康:福利申请人的痛苦表现以及对评估和支持的影响
  • 批准号:
    ES/X002101/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Career: Learning Multimodal Representations of the Physical World
职业:学习物理世界的多模态表示
  • 批准号:
    2339071
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
  • 批准号:
    2347096
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
  • 批准号:
    2401114
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了