EAGER/Collaborative Research: Field-assisted Manufacturing of Metal Matrix Composites with Custom Microstructures

EAGER/协作研究:具有定制微观结构的金属基复合材料的现场辅助制造

基本信息

  • 批准号:
    1502900
  • 负责人:
  • 金额:
    $ 5.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Metal matrix composites consist of at least two distinct materials where a continuous metallic material is combined with other materials. Various types of materials, such as another metal, a ceramic, or an organic compound, typically in the form of particles and fibers, are added to the metallic material to change or improve the overall material properties. Most of the manufacturing methods used for production of metal matrix composites, however, have limited capabilities in controlling these particles and fibers and typically result in a less than ideal distribution of them. This EArly-Grant for Exploratory Research (EAGER) study is motivated by such limited capabilities in creating custom structures by existing manufacturing techniques for metal matrix composites. This award supports a novel concept of using an electromagnetic force to control the particles and fibers to create custom composite structures that can potentially enhance and tailor the performance. The project will help strengthen US leadership in advanced manufacturing of composite materials and contribute to various application technologies that involve control and shielding of electromagnetic field such as telecommunications, radars, waveguide materials, antennas, medical devices, and magnetic storage materials.The innovative concepts of Field-assisted Composite Manufacturing (FCM) allow construction of custom reinforcement architectures through: (i) a uniquely designed mask layer made of a magnetically shielding material that can manipulate electromagnetic field patterns in microscale resolution; and (ii) the layer-by-layer (bottom-up) manufacturing approach integrated with metallurgical processing (top-down) that can accomplish a fine control of the microstructure, while efficiently building large structures. The research team will establish a fundamental basis for the FCM by performing experiments to evaluate the novel concept of mask patterning to arrange and orient nanoparticles/fibers on a substrate sheet to achieve a custom designed microstructure after consolidation, and by developing a multiphysics numerical model that can predict particle and fiber orientation under an electromagnetic field.
金属基复合材料由至少两种不同的材料组成,其中连续的金属材料与其他材料组合。 将各种类型的材料(例如另一种金属、陶瓷或有机化合物,通常以颗粒和纤维的形式)添加到金属材料中以改变或改善整体材料性质。 然而,用于生产金属基质复合材料的大多数制造方法在控制这些颗粒和纤维方面具有有限的能力,并且通常导致它们的不太理想的分布。 这项EARLY探索性研究资助(EAGER)研究的动机是通过现有的金属基复合材料制造技术创建定制结构的能力有限。该奖项支持使用电磁力控制颗粒和纤维以创建定制复合材料结构的新概念,该结构可以潜在地增强和定制性能。 该项目将有助于加强美国在先进复合材料制造领域的领导地位,并为涉及电磁场控制和屏蔽的各种应用技术做出贡献,如电信、雷达、波导材料、天线、医疗器械和磁存储材料。场辅助复合材料制造(FCM)的创新概念允许通过以下方式构建定制增强结构:(i)由磁屏蔽材料制成的独特设计的掩模层,其可以以微米级分辨率操纵电磁场图案;以及(ii)与冶金处理(自上而下)集成的逐层(自下而上)制造方法,其可以实现对微结构的精细控制,同时有效地构建大型结构。 该研究小组将通过实验来评估掩模图案化的新概念,以在衬底片上排列和定向纳米颗粒/纤维,从而在固结后实现定制设计的微结构,并通过开发一个多物理场数值模型来预测电磁场下的颗粒和纤维取向,从而为FCM奠定基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gap-Yong Kim其他文献

Acoustic softening and hardening in aluminum: Modeling and experiments
铝的声学软化和硬化:建模和实验
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Zhehe Yao;Gap-Yong Kim;Zhihua Wang;LeAnn Faidley;Qingze Zou;Deqing Mei;Zichen Chen
  • 通讯作者:
    Zichen Chen
Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting
叠加高频振动对铝微细尺度镦粗变形的影响
  • DOI:
    10.1016/j.jmatprotec.2011.10.017
  • 发表时间:
    2012-03
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Zhehe Yao;Gap-Yong Kim;Leann Faidley;Qingze Zou;Deqing Mei;Zichen Chen
  • 通讯作者:
    Zichen Chen
Experimental Study of High-Frequency Vibration Assisted Micro/Mesoscale Forming of Metallic Materials, Transactions of the ASME
金属材料高频振动辅助微/介观成形实验研究,ASME Transactions

Gap-Yong Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gap-Yong Kim', 18)}}的其他基金

Novel Manufacturing of Bio-inspired Metal Matrix Composites by Semisolid Forming-Joining
通过半固态成型连接新型仿生金属基复合材料制造
  • 批准号:
    1030120
  • 财政年份:
    2010
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Standard Grant
High-Performance Micro-Forming, Joining, and Punching Processes Enabled by a Novel Design and Control of Magnetostrictive Actuators
磁致伸缩执行器的新颖设计和控制实现了高性能微成型、连接和冲压工艺
  • 批准号:
    0800353
  • 财政年份:
    2008
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 5.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了