Tuning Reactivity, Electronic Structure and Properties via Pressure: Predicting Novel Superconductors
通过压力调节反应性、电子结构和特性:预测新型超导体
基本信息
- 批准号:1505817
- 负责人:
- 金额:$ 34.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-06-15 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYThis award supports research and education whose ultimate goal is to rationally design new superconductors, materials through which electric current can flow without losing energy, via computational modeling. Replacing copper wires with superconducting power lines would have a tremendous impact on the electrical power infrastructure of the USA, but unfortunately all of the currently known superconductors must be cooled down to very low temperatures before they become superconducting. Research suggests that hydrogen-rich solids could potentially behave as superconductors at high temperatures, and they will therefore be the focus of this project.Just like diamond can be synthesized at high pressure within the earth, researchers can use pressure as a variable to create new materials with unusual properties that may remain stable when the pressure is released. A number of new superconductors have been synthesized in this way. However, since these experiments are very difficult to perform, computational predictions can accelerate new materials discovery. The PI will carry out calculations based upon quantum mechanics to predict promising new targets for synthesis, and collaborate with leading experimental groups in high-pressure research that will attempt to synthesize these materials. To advance this goal the PI will further develop a set of software tools, which can be used to computationally predict the structure of a solid without any experimental information. These tools are made freely available to the materials science, physics and chemistry communities, thereby advancing rational materials design as well as current and future discoveries in science and engineering. Graduate and undergraduate students will be trained in rational computational materials design and programming, thereby preparing them for future careers where synergy between theory, computation and experiment leads to innovation. Student and faculty exchange with a primarily undergraduate, minority serving institution (California State University San Bernardino) will expose these students to research and future career opportunities in STEM fields, and train them in state-of-the-art materials modeling techniques. TECHNICAL SUMMARYThis award supports theoretical research and education that will lead towards the rational design of novel superconductors. The PI will computationally predict the crystal structures of materials with unique stoichiometries and structures that can be synthesized using the pressure variable, and study their electronic structures and properties via first-principles calculations. Focus will be placed on compounds containing hydrogen doped with a p-block element because strong covalent bonds between the p-block atoms may render these structures metastable upon decompression to atmospheric pressures, and both experiment and theory suggest that binary hydrides may have a high superconducting transition temperature. The PI will also study binary polar intermetallics, as it has already been demonstrated that many of these can be synthesized at modest pressures, remain stable at atmospheric conditions, and behave as BCS superconductors. New, perhaps completely unexpected, chemistry and totally new types of materials will be discovered theoretically, and the predictions will be confirmed by leading experimental groups in high pressure research. The award will also support the further development of the "XtalOpt" evolutionary algorithm, which can be used to predict the structure of an extended system given only its stoichiometry. Key developments will increase the size and complexity of the unit cells that can be predicted without any experimental information, and accelerate the progress of a priori structure prediction for extended systems. The crystallography suite within the highly popular chemical builder, editor and visualizer "Avogadro", will be further advanced. Because XtalOpt and Avogadro are written under licenses approved by the Open Source Initiative, the program code can be re-used, thereby contributing towards cyberinfrastructure as well as current and future discoveries in science and engineering. Graduate and undergraduate students will be trained in rational computational materials design and programming, thereby preparing them for future careers where synergy between theory, computation and experiment leads to innovation. Student and faculty exchange with a primarily undergraduate, minority serving institution (California State University San Bernardino) will expose these students to research and future career opportunities in STEM fields, and train them in state-of-the-art materials modeling techniques.
非技术总结该奖项支持研究和教育,其最终目标是合理设计新的超导体,通过计算建模,电流可以在不损失能量的情况下流动的材料。用超导电力线取代铜线将对美国的电力基础设施产生巨大影响,但不幸的是,所有目前已知的超导体在成为超导体之前都必须冷却到非常低的温度。研究表明,富含氢的固体在高温下有可能表现出超导体的特性,因此它们将成为该项目的重点。就像金刚石可以在地球内部的高压下合成一样,研究人员可以将压力作为变量,创造出具有不同寻常特性的新材料,这些材料在压力释放时可能保持稳定。许多新的超导体就是用这种方法合成的。然而,由于这些实验很难进行,计算预测可以加速新材料的发现。PI将进行基于量子力学的计算,以预测有希望的新合成目标,并与尝试合成这些材料的高压研究中的领先实验小组合作。为了推进这一目标,PI将进一步开发一套软件工具,可用于在没有任何实验信息的情况下计算预测固体的结构。这些工具免费提供给材料科学,物理和化学界,从而推进合理的材料设计以及当前和未来的科学和工程发现。研究生和本科生将接受合理的计算材料设计和编程培训,从而为未来的职业生涯做好准备,理论,计算和实验之间的协同作用导致创新。学生和教师交换主要是本科,少数民族服务机构(加州州立大学圣贝纳迪诺)将暴露这些学生在干领域的研究和未来的职业机会,并培养他们在国家的最先进的材料建模技术。该奖项支持理论研究和教育,这将导致新的超导体的合理设计。PI将计算预测具有独特化学计量和结构的材料的晶体结构,这些材料可以使用压力变量合成,并通过第一原理计算研究它们的电子结构和性质。重点将放在含有掺杂有p-区元素的氢的化合物上,因为p-区原子之间的强共价键可能使这些结构在减压到大气压时亚稳定,并且实验和理论都表明二元超导体可能具有高的超导转变温度。PI还将研究二元极性金属间化合物,因为已经证明其中许多可以在适度的压力下合成,在大气条件下保持稳定,并表现为BCS超导体。新的,也许是完全出乎意料的,化学和全新类型的材料将在理论上被发现,并且预测将被高压研究中的领先实验组证实。 该奖项还将支持“XtalOpt”进化算法的进一步开发,该算法可用于预测仅考虑其化学计量的扩展系统的结构。关键的发展将增加的尺寸和复杂性的单位细胞,可以预测没有任何实验信息,并加快了扩展系统的先验结构预测的进展。非常受欢迎的化学构建器,编辑器和可视化工具“Avogadro”中的晶体学套件将进一步发展。由于XtalOpt和Avogadro是根据开源计划批准的许可证编写的,因此程序代码可以重复使用,从而为网络基础设施以及当前和未来的科学和工程发现做出贡献。研究生和本科生将接受合理的计算材料设计和编程培训,从而为未来的职业生涯做好准备,理论,计算和实验之间的协同作用导致创新。学生和教师交换主要是本科,少数民族服务机构(加州州立大学圣贝纳迪诺)将暴露这些学生在干领域的研究和未来的职业机会,并培养他们在国家的最先进的材料建模技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eva Zurek其他文献
Chemistry under high pressure
高压下的化学
- DOI:
10.1038/s41570-020-0213-0 - 发表时间:
2020-09-14 - 期刊:
- 影响因子:51.700
- 作者:
Maosheng Miao;Yuanhui Sun;Eva Zurek;Haiqing Lin - 通讯作者:
Haiqing Lin
A super‐hard high entropy boride containing Hf, Mo, Ti, V, and W
含有 Hf、Mo、Ti、V 和 W 的超硬高熵硼化物
- DOI:
10.1111/jace.19795 - 发表时间:
2024 - 期刊:
- 影响因子:3.9
- 作者:
S. Filipović;N. Obradović;G. Hilmas;W. Fahrenholtz;Donald W. Brenner;Jon‐Paul Maria;Douglas E. Wolfe;Eva Zurek;Xiomara Campilongo;Stefano Curtarolo - 通讯作者:
Stefano Curtarolo
Efficient Modelling of Anharmonicity and Quantum Effects in PdCuH$_2$ with Machine Learning Potentials
利用机器学习潜力对 PdCuH$_2$ 中的非谐性和量子效应进行有效建模
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Francesco Belli;Eva Zurek - 通讯作者:
Eva Zurek
Powder X-ray diffraction assisted evolutionary algorithm for crystal structure prediction
粉末 X 射线衍射辅助进化算法用于晶体结构预测
- DOI:
10.1039/d4dd00269e - 发表时间:
2024-11-28 - 期刊:
- 影响因子:5.600
- 作者:
Stefano Racioppi;Alberto Otero-de-la-Roza;Samad Hajinazar;Eva Zurek - 通讯作者:
Eva Zurek
span class="small-caps"XtalOpt/span version 13: Multi-objective evolutionary search for novel functional materials
<span class="smallcaps">XtalOpt</span> 版本13:用于新型功能材料的多目标进化搜索
- DOI:
10.1016/j.cpc.2024.109306 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:3.400
- 作者:
Samad Hajinazar;Eva Zurek - 通讯作者:
Eva Zurek
Eva Zurek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eva Zurek', 18)}}的其他基金
Theoretical Prediction of Hydrogen Rich High-Temperature Superconductors
富氢高温超导体的理论预测
- 批准号:
2136038 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
EAGER: SUPER: Collaborative Research: Stabilization of Warm and Light Superconductors at Low Pressures by Chemical Doping
EAGER:SUPER:合作研究:通过化学掺杂在低压下稳定温光超导体
- 批准号:
2132491 - 财政年份:2021
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Machine Learning Algorithm Prediction and Synthesis of Next Generation Superhard Functional Materials
合作研究:DMREF:下一代超硬功能材料的机器学习算法预测与合成
- 批准号:
2119065 - 财政年份:2021
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Metallization of Hydrogen-Rich Materials: Predicting Novel Superconductors
富氢材料的金属化:预测新型超导体
- 批准号:
1827815 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Metallization of Hydrogen-Rich Materials: Predicting Novel Superconductors
富氢材料的金属化:预测新型超导体
- 批准号:
1005413 - 财政年份:2010
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
相似海外基金
CAS: Collaborative Research: Electronic Structure/Function Relationships Underpinning Atom Transfer Reactivity
CAS:合作研究:支撑原子转移反应性的电子结构/功能关系
- 批准号:
2247818 - 财政年份:2023
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Electronic Structure/Function Relationships Underpinning Atom Transfer Reactivity
CAS:合作研究:支撑原子转移反应性的电子结构/功能关系
- 批准号:
2247817 - 财政年份:2023
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
New Frontiers in Ligand Design: From Electronic Structure to Novel Properties and Reactivity, to Medicinal Inorganic Chemistry
配体设计的新前沿:从电子结构到新颖的性质和反应性,再到药用无机化学
- 批准号:
RGPIN-2019-06749 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Grants Program - Individual
New Frontiers in Ligand Design: From Electronic Structure to Novel Properties and Reactivity, to Medicinal Inorganic Chemistry
配体设计的新前沿:从电子结构到新颖的性质和反应性,再到药用无机化学
- 批准号:
RGPIN-2019-06749 - 财政年份:2021
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Grants Program - Individual
New Frontiers in Ligand Design: From Electronic Structure to Novel Properties and Reactivity, to Medicinal Inorganic Chemistry
配体设计的新前沿:从电子结构到新颖的性质和反应性,再到药用无机化学
- 批准号:
RGPIN-2019-06749 - 财政年份:2020
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Grants Program - Individual
New Frontiers in Ligand Design: From Electronic Structure to Novel Properties and Reactivity, to Medicinal Inorganic Chemistry
配体设计的新前沿:从电子结构到新颖的性质和反应性,再到药用无机化学
- 批准号:
RGPAS-2019-00054 - 财政年份:2020
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
New Frontiers in Ligand Design: From Electronic Structure to Novel Properties and Reactivity, to Medicinal Inorganic Chemistry
配体设计的新前沿:从电子结构到新颖的性质和反应性,再到药用无机化学
- 批准号:
RGPIN-2019-06749 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Grants Program - Individual
New Frontiers in Ligand Design: From Electronic Structure to Novel Properties and Reactivity, to Medicinal Inorganic Chemistry
配体设计的新前沿:从电子结构到新颖的性质和反应性,再到药用无机化学
- 批准号:
RGPAS-2019-00054 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Quantum-State-Selected Ion-Molecule Reaction Dynamics: Effects of Translational, Rotational, Vibrational, Spin-Orbit, and Electronic States on Chemical Reactivity
量子态选择离子分子反应动力学:平移、旋转、振动、自旋轨道和电子态对化学反应性的影响
- 批准号:
1763319 - 财政年份:2018
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
SusChEM: Electronic Structure and Reactivity of Peroxo- and Hydroxomanganese Compounds
SusChEM:过氧和羟基锰化合物的电子结构和反应性
- 批准号:
1565661 - 财政年份:2016
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant














{{item.name}}会员




