EAGER: SUPER: Collaborative Research: Stabilization of Warm and Light Superconductors at Low Pressures by Chemical Doping
EAGER:SUPER:合作研究:通过化学掺杂在低压下稳定温光超导体
基本信息
- 批准号:2132491
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports computational and experimental research and education aimed to result in the rational design and synthesis of materials that are superconducting at ambient temperatures and pressures. Superconductors can be used in many important technologies, including cables that transmit power without loss, electromagnets in magnetic resonance imaging machines and wind-turbines, extremely sensitive sensors, and as qubits in superconducting computers. Unfortunately, superconductivity in a material normally takes place at cryogenic temperatures, which is a major hurdle for applications. Recent major breakthroughs have shown that near room temperature superconductors can be made in materials that contain light elements, but only at pressures that surpass one million times atmospheric pressure. One class of known high pressure superconducting materials is based on cage-like structures made from hydrogen that are filled with metal atoms. The team will perform computations based upon quantum mechanics to pinpoint the best chemical species that can be added to these cage-like structures so that they retain their good superconducting properties even at lower pressures. Key to uncovering the most promising dopants will be the calculation of chemical pressure maps. Subsequently, diamond anvil cells and large volume presses will be employed to synthesize high-quality crystals of select compounds whose structures and properties will be experimentally determined. Analogous work will be performed on cage-like structures made from boron and carbon atoms.Graduate students will be exposed to a multi-disciplinary atmosphere, and learn how to communicate with experimentalists and theoreticians from different backgrounds. They will participate in outreach activities including mentoring undergraduates, especially from minority and underrepresented groups, and university open house events. The tight feedback loop between experiment and theory will provide a roadmap for future materials-by-design research.TECHNICAL SUMMARYThis award supports computational and experimental research and education aimed to result in the rational design and synthesis of materials that are superconducting at ambient temperatures and pressures. First-principles calculations of chemical pressure maps will be used to uncover the most promising chemical dopants for achieving high superconducting critical temperatures in light element systems stable at low, and even ambient pressures. The pressure-dependent stability, superconducting properties and spectroscopic signatures of these compounds will be calculated, and related to the chemical pressure maps. At the same time, novel pathways within laser heated diamond anvil cells and large volume presses will be used to synthesize high-quality crystals of the most promising candidates. Synchrotron single-crystal x-ray diffraction, Raman spectroscopy and transport properties will be measured, and compared with theoretical results to aid in structural, compositional, and physical property characterization. Electrical conductivity will be measured to verify superconductivity. This project will transform the way in which light element based high-temperature superconductors are designed, synthesized, and characterized.The PIs will focus on compounds related to the known binary superhydrides that contain clathrate cage-like structures because superconductivity has been measured in many of their members. The first class to be studied are boron/carbon analogues of the superhydrides because the replacement of the hydrogen atoms by light p-block elements that form strong covalent bonds will render some of these phases stable at normal pressures while retaining properties that are crucial for superconductivity. The second class are ternary superhydrides derived from the known binaries. Chemical pressure maps will reveal which elements have the correct radius to achieve a denser packing than in the binary hydride, while at the same time keeping the extended hydrogenic lattice required for the large electron phonon coupling. Experiments will map out the phase diagram by x-ray diffraction and Raman with laser heating under pressure.Students involved in this project will be trained in state-of-the-art theoretical and experimental techniques, and be exposed to a multi-disciplinary atmosphere where they learn to communicate with scientists from very different fields. The creation of materials that are superconducting at normal temperatures and pressures will have a tremendous impact on the electrical grid infrastructure, medical technology, renewable energy and lead to new innovations. The tight feedback loop between experiment and theory will advance the field of materials by design. The PIs will communicate with the popular science media about the breakthroughs made in this field, thereby educating the public and motivating future scientists.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持旨在合理设计和合成在常温常压下具有超导性能的材料的计算和实验研究和教育。超导体可用于许多重要技术,包括无损耗传输电力的电缆、磁共振成像机和风力涡轮机中的电磁铁、极其灵敏的传感器,以及超导计算机中的量子比特。不幸的是,材料中的超导电性通常发生在低温下,这是应用的主要障碍。最近的重大突破表明,可以在含有轻元素的材料中制造接近室温的超导体,但必须在超过100万倍大气压的压力下才能制造。一类已知的高压超导材料是基于充满金属原子的氢气制成的笼状结构。该团队将进行基于量子力学的计算,以确定可以添加到这些笼状结构中的最佳化学物种,以便它们即使在较低的压力下也能保持良好的超导性能。发现最有希望的掺杂剂的关键将是计算化学压力图。随后,将使用金刚石顶压机和大容量压力机来合成高质量的精选化合物晶体,其结构和性能将通过实验确定。类似的工作将在由硼和碳原子制成的笼状结构上进行。研究生将接触到多学科的氛围,并学习如何与来自不同背景的实验者和理论家进行交流。他们将参加外展活动,包括指导本科生,特别是来自少数群体和代表性不足群体的本科生,以及大学开放日活动。实验和理论之间的紧密反馈回路将为未来的逐个设计的材料研究提供路线图。技术总结该奖项支持旨在导致在常温常压下具有超导性质的材料的合理设计和合成的计算和实验研究与教育。化学压力图的第一性原理计算将被用来揭示在轻元素系统中实现高超导临界温度的最有希望的化学掺杂剂,该系统在低压力甚至环境压力下稳定。我们将计算这些化合物的压强相关稳定性、超导性质和光谱特征,并与化学压力图相关联。与此同时,在激光加热的钻石压腔和大容量压力机中的新途径将被用来合成最有希望的候选者的高质量晶体。将测量同步加速器单晶X射线衍射、拉曼光谱和输运性质,并与理论结果进行比较,以帮助进行结构、成分和物理性质的表征。将测量电导率以验证超导性。这个项目将改变轻元素高温超导体的设计、合成和表征的方式。PI将专注于与已知的包含笼状结构的二元超氢化合物有关的化合物,因为已经在它们的许多成员中测量到超导电性。第一类要研究的是超氢化物的硼/碳类似物,因为氢原子被形成强烈共价键的轻质p-块元素取代,将使其中一些相在常压下保持稳定,同时保留对超导电性至关重要的性质。第二类是从已知的双星衍生的三元超氢化合物。化学压力图将揭示哪些元素具有正确的半径,以实现比二元氢化物中更密集的堆积,同时保持大电子声子耦合所需的扩展的类氢晶格。实验将通过X射线衍射和激光加压加热拉曼绘制相图。参与该项目的学生将接受最先进的理论和实验技术培训,并暴露在一个多学科的氛围中,在那里他们学习与来自非常不同领域的科学家进行交流。在常温常压下超导材料的产生将对电网基础设施、医疗技术、可再生能源产生巨大影响,并带来新的创新。实验和理论之间的紧密反馈回路将通过设计推动材料领域的发展。PIS将与科普媒体就这一领域取得的突破进行沟通,从而教育公众并激励未来的科学家。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eva Zurek其他文献
Chemistry under high pressure
高压下的化学
- DOI:
10.1038/s41570-020-0213-0 - 发表时间:
2020-09-14 - 期刊:
- 影响因子:51.700
- 作者:
Maosheng Miao;Yuanhui Sun;Eva Zurek;Haiqing Lin - 通讯作者:
Haiqing Lin
A super‐hard high entropy boride containing Hf, Mo, Ti, V, and W
含有 Hf、Mo、Ti、V 和 W 的超硬高熵硼化物
- DOI:
10.1111/jace.19795 - 发表时间:
2024 - 期刊:
- 影响因子:3.9
- 作者:
S. Filipović;N. Obradović;G. Hilmas;W. Fahrenholtz;Donald W. Brenner;Jon‐Paul Maria;Douglas E. Wolfe;Eva Zurek;Xiomara Campilongo;Stefano Curtarolo - 通讯作者:
Stefano Curtarolo
Efficient Modelling of Anharmonicity and Quantum Effects in PdCuH$_2$ with Machine Learning Potentials
利用机器学习潜力对 PdCuH$_2$ 中的非谐性和量子效应进行有效建模
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Francesco Belli;Eva Zurek - 通讯作者:
Eva Zurek
Powder X-ray diffraction assisted evolutionary algorithm for crystal structure prediction
粉末 X 射线衍射辅助进化算法用于晶体结构预测
- DOI:
10.1039/d4dd00269e - 发表时间:
2024-11-28 - 期刊:
- 影响因子:5.600
- 作者:
Stefano Racioppi;Alberto Otero-de-la-Roza;Samad Hajinazar;Eva Zurek - 通讯作者:
Eva Zurek
span class="small-caps"XtalOpt/span version 13: Multi-objective evolutionary search for novel functional materials
<span class="smallcaps">XtalOpt</span> 版本13:用于新型功能材料的多目标进化搜索
- DOI:
10.1016/j.cpc.2024.109306 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:3.400
- 作者:
Samad Hajinazar;Eva Zurek - 通讯作者:
Eva Zurek
Eva Zurek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eva Zurek', 18)}}的其他基金
Theoretical Prediction of Hydrogen Rich High-Temperature Superconductors
富氢高温超导体的理论预测
- 批准号:
2136038 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Machine Learning Algorithm Prediction and Synthesis of Next Generation Superhard Functional Materials
合作研究:DMREF:下一代超硬功能材料的机器学习算法预测与合成
- 批准号:
2119065 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Metallization of Hydrogen-Rich Materials: Predicting Novel Superconductors
富氢材料的金属化:预测新型超导体
- 批准号:
1827815 - 财政年份:2019
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Tuning Reactivity, Electronic Structure and Properties via Pressure: Predicting Novel Superconductors
通过压力调节反应性、电子结构和特性:预测新型超导体
- 批准号:
1505817 - 财政年份:2015
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Metallization of Hydrogen-Rich Materials: Predicting Novel Superconductors
富氢材料的金属化:预测新型超导体
- 批准号:
1005413 - 财政年份:2010
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
相似国自然基金
水稻 SUPER WOMAN 5 (SPW5) 基因调控花器官发育的分子机制解析
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
肌细胞生成素与Super-enhancer互作形成正反馈环路促进肌损伤修复的机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
水稻SUPER WOMAN 3 (SPW3) 基因调控花器官发育的分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
水稻SUPER WOMAN 3(SPW3)基因调控花器官发育的分子机制研究
- 批准号:32100287
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于质谱的Super SILAC结合膜富集技术解析镁离子相关蛋白调控网络在Ⅲ型前列腺炎中的作用机制研究
- 批准号:22164007
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
Triptolide通过调控Super-enhancer抑制抗体产生改善抗体介导的移植肾排斥反应
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Super-enhancer驱动的LINC01468通过增强癌基因翻译促进鼻咽癌发生发展的机制研究
- 批准号:2020JJ4838
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
水稻SUPER BRABCH 1基因调控穗发育的分子机制研究
- 批准号:31971919
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Max-plus代数上的super本征问题
- 批准号:11901486
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Super-lncRNA与super-enhancer的相互作用在乳腺癌发生发展中作用机制的研究
- 批准号:81902680
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: EAGER: Towards Safeguarding the Emerging Miniapp Paradigm in Mobile Super Apps
合作研究:EAGER:捍卫移动超级应用中新兴的小应用范式
- 批准号:
2330265 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Towards Safeguarding the Emerging Miniapp Paradigm in Mobile Super Apps
合作研究:EAGER:捍卫移动超级应用中新兴的小应用范式
- 批准号:
2330264 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
- 批准号:
2218382 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
- 批准号:
2218119 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ECCS-EPSRC: Nitride Super-Junction HEMTs for Robust, Efficient, Fast Power Switching
合作研究:ECCS-EPSRC:用于稳健、高效、快速功率开关的氮化物超级结 HEMT
- 批准号:
2036915 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
EAGER: SUPER: Collaborative Research: Stabilization of Warm and Light Superconductors at Low Pressures by Chemical Doping
EAGER:SUPER:合作研究:通过化学掺杂在低压下稳定温光超导体
- 批准号:
2132574 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
EAGER: SUPER: Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
EAGER:SUPER:合作研究:掺杂共价键超导体的从头工程
- 批准号:
2132589 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Super Dual Auroral Radar Network (SuperDARN) Operations, Research and Community Support
合作研究:超级双极光雷达网络 (SuperDARN) 运营、研究和社区支持
- 批准号:
2125323 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: ECCS-EPSRC: Nitride Super-Junction HEMTs for Robust, Efficient, Fast Power Switching
合作研究:ECCS-EPSRC:用于稳健、高效、快速功率开关的氮化物超级结 HEMT
- 批准号:
2036740 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Super Dual Auroral Radar Network (SuperDARN) Operations, Research and Community Support
合作研究:超级双极光雷达网络 (SuperDARN) 运营、研究和社区支持
- 批准号:
1934410 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant