EAGER: Investigation of Lithium-Air Battery Cathode Reaction Mechanisms through SERS-Active Electrode

EAGER:通过SERS活性电极研究锂空气电池正极反应机制

基本信息

  • 批准号:
    1505943
  • 负责人:
  • 金额:
    $ 9.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-04-15 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

Zhu - 1505943This project is aimed at developing lithium-air batteries for use in electrically powered vehicles as alternatives to vehicles that run on fossil fuels. To compete with commercial internal combustion engines, electricity storage systems have to be significantly improved in energy density, power density and reversibility. Lithium-air batteries have the potential to significantly enhance the energy density but they are still immature and suffer from many issues, including the fact that they have sluggish and irreversible cathode reactions. Because the cathode reaction mechanism of the lithium-air battery is unclear, it is very difficult to design electrodes and electrolytes that cycle better. The primary objective in this research is to synthesize a bicontinuous, SERS (surface-enhanced Raman spectroscopy)-active electrode for lithium-air batteries and study the mechanism of charging/discharging processes by Raman spectroscopy. This is an EAGER grant to demonstrate the feasibility of the fabrication process.Intellectual Merit: This project seeks to fabricate the SERS-active electrodes to study the products formed on the cathode. The rationale for fabricating well organized bi-continuous 3D porous electrodes is to provide, simultaneously, a large effective surface area and an improvement in the electrolyte and oxygen diffusion. Lithium-air battery cathode reactions are complicated and sensitive to the local electrochemical environment. It is important to study the mechanisms of the battery electrode reactions to gain chemical information about the electrode throughout the charging/discharging process. In this work, the PI plans to use polymer templates to fabricate well-organized bicontinuous electrodes made of pristine chemical vapor deposited graphene. The bi-continuous electrodes can enhance the lithium-air battery kinetic performance and reduce the clog induced degradationTo enhance the Raman signals, the bi-continuous electrodes will be modified by the adsorption of uniform and regularly assembled gold nanoparticles. The modified electrodes may allow the detection, by surface-enhanced Raman spectroscopy, of trace intermediate compounds deposited on the electrodes. The PI proposes to use the modified electrode with stable solvents (Dimethoxyethane, Dimethyl sulfoxide and Tetra(ethylene) glycol dimethyl ether etc.) to fabricate lithium-air battery. A suite of characterization tools (including Raman, FTIR, TEM, XPS, and XRD) should enable the investigation of the materials on the air-cathode. Of particular interest are intermediate compounds deposited on the cathode during the charging and discharging processes that will be elucidated by SERS Raman spectroscopy to address fundamental material challenges associated with electrolyte/electrode stability. This research will provide the bases to design in-situ SERS Raman characterization techniques in the future, which may elucidate the cathode reaction mechanisms through the continuous investigation of the chemical information on the electrodes. Ultimately this may point to new engineering solutions for high performance, reversible lithium-air batteries.Broader Impacts: Understanding the electrode reaction mechanism is needed to improve capacity and cyclability of electrochemical energy storage system. This is also pivotal for material and process design. Due to the high theoretical capacitance of lithium-air battery and the possible high demand for these batteries in consumer and industrial applications, the potential impact from even a modest advance in cyclability or efficiency is quite large. There are both economic and environmental benefits to consider because increased battery capacity will decrease the replacement rate and may allow for the substitution of new technology for old. This could include the replacement of the internal combustion engine with electrical motors for uses in transportation systems. Dissemination of concepts associated with this research will be to a broader, public audience through various outreach programs. Local outreach efforts will include Science Olympiad weekend for students in grades 4-6, the UA-Harker program for high-school students working with professors in the institute of polymer science and polymer engineering. Additionally, the PI's group is active in ACS SEED program to promote the research activities of economically disadvantaged local high school students. The goal of these outreach activities are to (1) illustrate hands-on nanotechnology, (2) excite students about science and technology so that they may be encouraged to consider careers in STEM fields, and (3) teach about challenges and opportunities associated with the engineering of chemical processes.
Zhu -1505943该项目旨在开发用于电动车辆的锂空气电池,作为化石燃料车辆的替代品。 为了与商用内燃机竞争,电力存储系统必须在能量密度、功率密度和可逆性方面得到显著改善。锂空气电池有潜力显着提高能量密度,但它们仍然不成熟,并且存在许多问题,包括它们具有缓慢和不可逆的阴极反应。由于锂空气电池的阴极反应机理尚不清楚,因此很难设计出循环性能更好的电极和电解质。本研究的主要目的是合成一种双连续的锂-空气电池表面增强拉曼光谱活性电极,并通过拉曼光谱研究充放电过程的机理。这是一个EAGER基金,以证明制造过程的可行性。智力优点:本项目旨在制造SERS活性电极,以研究在阴极上形成的产物。制造组织良好的双连续3D多孔电极的基本原理是同时提供大的有效表面积以及电解质和氧扩散的改善。锂空气电池阴极反应复杂,对局部电化学环境敏感。研究电池电极反应的机理以获得整个充电/放电过程中关于电极的化学信息是重要的。在这项工作中,PI计划使用聚合物模板来制造由原始化学气相沉积石墨烯制成的组织良好的双连续电极。为了增强拉曼信号,将通过吸附均匀且规则组装的金纳米颗粒来修饰双连续电极。改性电极可以允许通过表面增强拉曼光谱法检测沉积在电极上的痕量中间化合物。PI建议使用具有稳定溶剂(二甲氧基乙烷、二甲亚砜和四(乙二醇)二甲醚等)的修饰电极。来制造锂空气电池。一套表征工具(包括拉曼、FTIR、TEM、XPS和XRD)应该能够对空气阴极上的材料进行研究。特别感兴趣的是在充电和放电过程中沉积在阴极上的中间化合物,其将通过Sers拉曼光谱来阐明,以解决与电解质/电极稳定性相关的基本材料挑战。本研究为今后设计原位Sers拉曼表征技术提供了基础,从而可以通过对电极表面化学信息的不断研究来阐明阴极反应机理。最终,这可能会为高性能可逆锂空气电池提供新的工程解决方案。更广泛的影响:需要了解电极反应机制,以提高电化学储能系统的容量和循环能力。这也是材料和工艺设计的关键。由于锂空气电池的理论电容很高,以及消费者和工业应用对这些电池的需求可能很高,因此即使是循环能力或效率的适度提高也会产生相当大的潜在影响。这既有经济效益,也有环境效益,因为增加电池容量将降低更换率,并可能允许用新技术取代旧技术。这可能包括用电动机取代内燃机,用于运输系统。与本研究相关的概念的传播将通过各种外联方案向更广泛的公众受众进行。当地的外联工作将包括4-6年级学生的科学奥林匹克周末,与聚合物科学和聚合物工程研究所的教授合作的高中生的UA-Harker计划。此外,PI的小组积极参与ACS SEED计划,以促进经济困难的当地高中学生的研究活动。这些推广活动的目标是(1)说明动手纳米技术,(2)激发学生对科学和技术,使他们可以被鼓励考虑在干领域的职业生涯,和(3)教有关的挑战和机遇与化学过程的工程。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Superionic Conductive, Electrochemically Stable Dual-Salt Polymer Electrolyte
  • DOI:
    10.1016/j.joule.2018.06.008
  • 发表时间:
    2018-09-19
  • 期刊:
  • 影响因子:
    39.8
  • 作者:
    Li, Si;Chen, Yu-Ming;Zhu, Yu
  • 通讯作者:
    Zhu, Yu
High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction
  • DOI:
    10.1021/acsnano.7b04646
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Liu, Kewei;Zhang, Changlin;Zhu, Yu
  • 通讯作者:
    Zhu, Yu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yu Zhu其他文献

Primary cavitating tuberculosis in a 2-month-old infant.
2 个月大婴儿的原发性空洞性结核病。
Quantitative assessment of motor impairment and surgical outcome in Hirayama disease with proximal involvement using motor unit number index
使用运动单位数指数定量评估近端受累平山病的运动障碍和手术结果
  • DOI:
    10.1016/j.neucli.2021.02.002
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chaojun Zheng;Yu Zhu;Qifeng Yu;Dongqing Zhu;Jun Li;Feizhou Lyu;Robert Weber;Kai Qiao;Jianyuan Jiang
  • 通讯作者:
    Jianyuan Jiang
Mitigation of the pressure fluctuation arising from high-speed train intersection in tunnels using enlarged tunnel ends
利用扩大隧道端头缓解隧道内高速列车交叉口产生的压力波动
Two novel two-dimensional cluster polymers {[NMe4]2[MOS3Cu3(μ2-I)3]} (M=Mo,W): synthesis, crystal structure and interesting optical alternation from self-defocusing to self-focusing
两种新型二维簇聚合物{[NMe4]2[MOS3Cu3(μ2-I)3]} (M=Mo,W):合成、晶体结构和从自散焦到自聚焦的有趣光学交替
  • DOI:
    10.1016/j.ica.2003.05.008
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    H. Hou;Yongli Wei;Yinglin Song;Yu Zhu;Yaoting Fan
  • 通讯作者:
    Yaoting Fan
A Double-Data- Rate 2 (DDR2) Interface Phase-Change Memory with 533MB/s Read -Write Data Rate and 37.5ns Access Latency for Memory-Type Storage Class Memory Applications
一种双数据速率 2 (DDR2) 接口相变存储器,具有 533MB/s 读写数据速率和 37.5ns 访问延迟,适用于存储器类型存储级存储器应用
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Lung;Christopher P. Miller;Chia;S. Lewis;J. Morrish;T. Perri;R. Jordan;H. Ho;T. Chen;W. Chien;Mark Drapa;T. Maffitt;J. Heath;Yutaka Nakamura;J. Okazawa;K. Hosokawa;M. BrightSky;R. Bruce;Huai;A. Ray;Y. Ho;C. Yeh;Wanki Kim;Sangbum Kim;Yu Zhu;C. Lam
  • 通讯作者:
    C. Lam

Yu Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yu Zhu', 18)}}的其他基金

IN-SITU RAMAN SPECTROSCOPY STUDY OF LITHIUM-AIR BATTERY WITH BI-CONTINUOUS SERS-ACTIVE ELECTRODE AND MEMBRANE
双连续拉曼活性电极和膜锂空气电池的原位拉曼光谱研究
  • 批准号:
    1706681
  • 财政年份:
    2017
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Inhibition of Water Crystallization by 3D Confinement in Supramolecular Hydrogels
超分子水凝胶中 3D 限制对水结晶的抑制
  • 批准号:
    1606685
  • 财政年份:
    2016
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
CAREER: Molecular Packing of Pi-Conjugated Polymers through Fused Hydrogen Bond-mediated Self-assembly
职业:通过熔融氢键介导的自组装进行 Pi 共轭聚合物的分子堆积
  • 批准号:
    1554851
  • 财政年份:
    2016
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Continuing Grant
UNS: Rapid synthesis of ordered mesoporous materials through microwave processing of cooperatively assembled composites
UNS:通过协同组装复合材料的微波处理快速合成有序介孔材料
  • 批准号:
    1510612
  • 财政年份:
    2015
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant

相似海外基金

In-depth Investigation of Lithium Dendrite Formation Processes
深入研究锂枝晶形成过程
  • 批准号:
    DE240101090
  • 财政年份:
    2024
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Discovery Early Career Researcher Award
Investigation of Potential Pathways for the Formation of Lithium Rich Giants
富锂巨星形成的潜在途径研究
  • 批准号:
    567940-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
ERI: A Fundamental Investigation of the Effectiveness of Cathode Regeneration Process for Spent Lithium Ion Batteries
ERI:废旧锂离子电池阴极再生过程有效性的基础研究
  • 批准号:
    2138553
  • 财政年份:
    2022
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Investigation of Lithium and Creatine Supplementation Alone and in Combination for Adipose Tissue Thermogenesis
单独和联合补充锂和肌酸对脂肪组织生热作用的研究
  • 批准号:
    571143-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Investigation of determining factor on electrochemical stabilities of lithium and sodium metal battery electrolytes
锂、钠金属电池电解液电化学稳定性决定因素的研究
  • 批准号:
    21K05263
  • 财政年份:
    2021
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of energy density limitation for lithium sulfur batteries
锂硫电池能量密度限制研究
  • 批准号:
    2128488
  • 财政年份:
    2021
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Standard Grant
Investigation of Electrode Behavior of Layered Oxide Cathode Single Crystals and its Development into Single Crystal Lithium Ion Batteries
层状氧化物正极单晶电极行为研究及其单晶锂离子电池发展
  • 批准号:
    21K18906
  • 财政年份:
    2021
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Investigation and Modelling of Particle Cracking in Lithium-ion Batteries
锂离子电池中颗粒裂纹的研究和建模
  • 批准号:
    566269-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Investigation on the replacement of lithium carbonate as accelerator for calcium aluminate cements and its underlying working mechanism
替代碳酸锂作为铝酸钙水泥促进剂及其作用机理研究
  • 批准号:
    429917653
  • 财政年份:
    2019
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Research Grants
Investigation of the mechanism of Li plating in solid electrolyte for all solid state lithium ion batteries
全固态锂离子电池固体电解质镀锂机理研究
  • 批准号:
    19K15667
  • 财政年份:
    2019
  • 资助金额:
    $ 9.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了